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Hypomyelination caused by a novel 
homozygous pathogenic variant in FOLR1: 
complete clinical and radiological recovery 
with oral folinic acid therapy and review 
of the literature
Ana Potic1*  , Stefanie Perrier2,3, Tijana Radovic4, Svetlana Gavrilovic5, Jelena Ostojic6, Luan T. Tran2,3, 
Isabelle Thiffault7,8,9, Tomi Pastinen7,8, Raphael Schiffmann10 and Geneviève Bernard2,3,11,12 

Abstract 

Background Neurodegeneration due to cerebral folate transport deficiency is a rare autosomal recessive disorder 
caused by biallelic pathogenic variants in FOLR1. Onset typically occurs in late infancy and is characterized by psycho-
motor regression, epilepsy, and a hypomyelinating leukodystrophy on magnetic resonance imaging. If left untreated, 
progressive neurodegeneration occurs. However, early treatment with folinic acid has been shown to stabilize 
or reverse neurological features. Approximately thirty patients have been described worldwide. Here, we report 
the first two cases with genetically proven cerebral folate transport deficiency from South-Eastern Europe, describe 
the effect of oral folinic acid therapy on clinical and neuroradiological features and review the literature.

Results Two siblings presented in childhood with clinical and radiological findings consistent with a hypomy-
elinating leukodystrophy. Exome sequencing revealed a novel homozygous pathogenic variant in FOLR1 
(c.465_466delinsTG; p.W156G), confirming the diagnosis of neurodegeneration due to cerebral folate transport defi-
ciency. Folinic acid treatment was promptly initiated in both patients. The younger sibling was treated early in disease 
course at 2 years of age, and demonstrated complete recovery in clinical and MRI features. The older sibling, who 
was 8 years of age at the time of diagnosis and treatment, demonstrated partial but substantial improvements.

Conclusion We present the first account in the literature that early treatment initiation with oral folinic acid alone 
can result in complete neurological recovery of both clinical and radiological abnormalities in neurodegeneration due 
to cerebral folate deficiency. Moreover, through the report of these patients along with review of the literature, we 
provide information about the natural history of the disease with comparison of treatment effects at different stages 
of disease progression. This report also reinforces the importance of universal access to genetic testing to ensure 
prompt diagnoses for treatable disorders.
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Background
Neurodegeneration due to cerebral folate transport 
deficiency (OMIM #613068), first described in 2009, is 
caused by biallelic pathogenic variants in FOLR1 [1]. 
FOLR1 (OMIM *136430) encodes for the folate recep-
tor-alpha (FOLRα), which is abundantly expressed in 
the choroid plexus and considered the main folate trans-
porter of 5-methyltetrahydrofolate (MTHF) across the 
blood–brain barrier. FOLRα is the only transporter 
responsible for cerebral folate supply via exosome-medi-
ated delivery of MTHF from the CSF to the brain paren-
chyma [1–3].

Biallelic hypomorphic pathogenic variants in FOLR1 
cause FOLRα deficiency, impairing cerebral folate trans-
port and supply, leading to isolated cerebral folate defi-
ciency and progressive neurodegeneration [1–3]. This 
disorder typically starts to manifest in late infancy with 
psychomotor regression, ataxia, and refractory epilepsy, 
with brain magnetic resonance imaging (MRI) demon-
strating a hypomyelinating leukodystrophy [1, 2].

The late-infantile onset and absence of embryonic mal-
formations in this disorder suggest preserved expression 
of folate receptor-beta (FOLRβ) in fetal choroid cells, 
which compensates for the lack of FOLRα function [1, 
2, 4]. However, downregulation of FOLRβ expression is 
thought to occur in the human choroid plexus from 4 
to 6 postnatal months onwards, which may explain the 
onset of the disease only in late infancy [1, 3, 4].

The pathophysiological mechanisms by which MTHF 
deficiency causes neurological disease are still under 
investigation. The prevailing hypothesis links the lack of 
MTHF to impaired myelin formation through cerebral 
methylation processes, which results in a deficiency of 
phosphatidylcholine, sphingomyelin, and other methyl-
ated membrane phospholipids crucial for myelin forma-
tion and stability [1]. Another recent hypothesis posits 
that folates are important for oligodendrocyte matura-
tion, survival, and thus for the myelination during CNS 
development [5].

Here, we report siblings with hypomyelination and 
neurodegeneration for whom exome sequencing revealed 
a homozygous novel pathogenic variant in FOLR1. We 
also present an in-depth report before and during folinic 
acid treatment, with clinical and MRI evolution, as well 
as a review of the previously published cases.

Methods
Ethics approval and research consent
This research was approved by the Institutional Review 
Boards of Clinic for Child Neurology and Psychiatry 
University of Belgrade (IRB number 1-48/3-2016) and 
the McGill University Health Center and Montreal Chil-
dren’s Hospital Research Ethic Boards (11-105-PED and 

2019-4972), and conducted following the 1964 Decla-
ration of Helsinki and its later amendments. Written 
informed consent was obtained from the patients’ par-
ents/legal guardians.

Genetic analysis
Exome sequencing was performed using genomic DNA 
extracted from whole blood following standard proto-
cols. DNA was prepared using the TruSeq library prep 
and samples were enriched using the IDT xGenv2 exome 
research panel supplemented with custom mitochon-
drial probes and sequenced to a minimum of 7 Gb for a 
mean of 80 × average coverage or greater on an Illumina 
NovaSeq 6000 (2 × 150 paired end reads). Bidirectional 
sequences were assembled, aligned to reference gene 
sequences based on human genome build GRCh37/
UCSC hg19, and analyzed using the custom-developed 
software RUNES and VIKING [6, 7]. Variants were fil-
tered to 1% minor allele frequency and prioritized using 
the American College of Medical Genetics and Genomics 
(ACMG) guidelines [8], including phenotypic assessment 
with OMIM disease associations.

Medical record and MRI review
We retrospectively reviewed medical records and evalu-
ated MRI studies conducted serially over 10  years for 
Patient 1 and over 4 years for Patient 2.

Further, we assessed the data from all published 
patients with biallelic pathogenic variants in FOLR1, 
considering their clinical features, neuroimaging results, 
genetic findings, treatment regimen, and response to 
treatment. This was completed by reviewing all biomedi-
cal literature available in the PubMed Medline database 
between September 2009-December 2022, using the fol-
lowing MeSH terms: FOLR1 gene, cerebral folate defi-
ciency, hypomyelination, leukodystrophy, folinic acid.

Serum folate measurements
Serum folate levels were measured using Abbott Archi-
tect i4000Sr test equipment and Abbott Architect Folate 
reagent using the Chemiluminescent Microparticle 
Immunoassay (CMIA) method.

Results
The patients described in this study are siblings, including 
a boy currently aged 12 years (Patient 1), and his younger 
sister currently aged 6 years (Patient 2). They were born 
to non-consanguineous unaffected parents of Serbian 
origin, with a family history negative for neurological dis-
orders. Both patients were referred to our department for 
additional investigations at the ages of 8 years (Patient 1, 
for epileptic encephalopathy) and 2 years (Patient 2, for 
mild cerebellar features).
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Pre‑treatment clinical findings
The older male sibling (Patient 1) had uneventful early 
psychomotor development until 18 months of age, when 
he gradually developed an ataxic gait and speech regres-
sion. At 4  years of age, he started having epileptic sei-
zures, which were treatment-resistant, occurred daily, 
and of multiple different types (tonic, focal with impaired 
awareness, atonic, and tonic–clonic). Various combina-
tions of ten standard antiepileptic drugs (AEDs) were 
tried without success. At the time, the patient was being 
treated in a department without resources for access to 
detailed metabolic investigations or genetic sequencing, 
resulting in his cause of illness remaining unknown. Cer-
ebellar ataxia and hypotonia progressed, and at 6.5 years 
of age, he lost the ability to walk and sit without sup-
port, with poor head control. His expressive language 
consisted of up to five meaningful words and he showed 
autistic behavioral changes with outbursts of anger and 
poor social contact. No other abnormalities were found 
on physical examination. The severity of his seizures 
increased, frequently leading to status epilepticus. EEG 
showed diffuse disturbance in cerebral activity with 
slow background activity and multifocal epileptiform 
discharges. The patient’s neurological motor, cognitive, 
and language function progressively worsened, leading 
to dependency for all activities of daily living and severe 
neurological impairment at 7.5 years of age. His examina-
tion at the time was characterized by a complete loss of 
speech and social interactions, as well as significant cere-
bellar signs (i.e., truncal and limb ataxia), axial hypotonia, 
and mild pyramidal and bulbar signs.

The younger female sibling (Patient 2) had normal psy-
chomotor development. At the age of 22  months, she 
started manifesting mild intention tremor in the upper 
limbs and mild truncal ataxia. She did not exhibit sei-
zures or any other neurological abnormalities.

Pre‑treatment brain MRI
In Patient 1, brain MRI at the age of 7 years (Fig. 1A3–
E3) showed diffuse supratentorial hypomyelination, 
with relative preservation of myelination in the internal 
capsule, the splenium and body of the corpus callosum 
(Fig. 1B3, C3, D3), with thinning of the corpus callosum 
(Fig.  1A3). Cerebellar white matter was also hypomy-
elinated (Fig.  1E3). There was cerebral and marked cer-
ebellar atrophy (Fig.  1A3–E3). When compared with 
MRIs obtained at age 5 years (Fig. 1A2–E2) and 2 years 
(Fig. 1A1–E1), the degree of hypomyelination was stable, 
but progression of cerebral and cerebellar atrophy was 
evident. These findings were consistent with a hypomy-
elinating leukodystrophy. In Patient 2, the first brain MRI 
at age 2 years revealed insufficient cerebral and cerebellar 

myelination for age, with a pattern similar to Patient 1, 
but with milder thinning of the corpus callosum and 
without cerebellar atrophy (Fig. 2A1–E1). Brain magnetic 
resonance spectroscopy (MRS) showed decreased white 
matter choline in both patients.

Clinical laboratory measurements
For both patients, routine blood analyses and urinalyses, 
including blood/urine metabolic screening (lactate, pyru-
vate, amino-acids, organic acids, very-long-chain fatty 
acids) and vitamin B12 and homocysteine concentra-
tions in serum, were normal. Of note, serum folate con-
centration values were also within normal range in both 
patients, measured at 17.8 ngr/ml in Patient 1, and 15.3 
ngr/ml in Patient 2 (normal range: 3.1–20.5 ngr/ml).

Lumbar punctures to measure CSF neurotransmitters 
were not performed due to lack of parental approval and 
resources in Serbia. Therefore, the most efficient and the 
least invasive method to investigate the genetic diagno-
sis was to promptly perform exome sequencing using 
patient DNA extracted from whole blood.

Genetic analysis
Using exome sequencing, in both siblings we identi-
fied a homozygous novel pathogenic variant in FOLR1: 
c.465_466delinsTG; p.W156G (NM_016725.3), which 
we assessed for pathogenicity using the ACMG guide-
lines and classifications. Using Sanger sequencing, we 
validated the presence of the variant in both patients and 
confirmed the parents to be heterozygous carriers (PP1). 
This specific variant has not been reported in large popu-
lation databases (gnomAD; https:// gnomad. broad insti 
tute. org/) (PM2), and a missense variant causing the same 
protein change is reported in heterozygous form in only 
3 individuals, with no homozygous individuals reported 
(minor allele frequency = 0.00001061). This variant is 
reported by in silico softwares to be pathogenic and is 
present in a conserved amino acid region (PP3). Addi-
tionally, this specific indel variant has not been reported 
in the literature, however a missense variant at the same 
position leading to the same protein change (c.466 T > G; 
p.W156G) has been reported in two affected siblings in a 
compound heteozygous form [9], and one affected female 
in a homozygous form [10] (Table 1) (PS1). Therefore, the 
genetic diagnosis for both patients was confirmed, with 
the opportunity to treat this disease with folinic acid.

Treatment and response to therapy
Treatment with folinic acid was initiated immediately 
after obtaining the genetic results, (i.e., at 8 years of age 
in Patient 1 and at 2  years of age in Patient 2) and the 
response to therapy was monitored over 4 years. Specifi-
cally, the patients were treated with levofolinic acid, the 

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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Fig. 1 Brain MRI of Patient 1 from age 2 to 12 years. T2-weighted images are shown at 2 years (column 1: A1–E1), 5 years (column 2: A2–E2), 
7 years (column 3: A3–E3), 10 years (column 4: A4–E4) and 12 years (column 5: A5–E5). Sagittal (panel A) images show mild to moderate thinning 
of the corpus callosum (white arrowhead), as well as mild cerebellar atrophy (white arrow). In panels B1–3, C1–3, and D1–3, severe lack of myelin 
deposition, together with progressive cerebral atrophy are appreciated. In panels B4–5, C4–5, and D4–5, improvement in myelination is seen, 
but incomplete myelination is still present at age 12 years. Of note, brain volume has improved at ages 10 and 12 years (B4–5, C4–5, and D4–5). 
In panel E, insufficient myelin deposition is seen in E1-2 in both the pons (white double-lined arrow) and cerebellum (white dashed arrow), 
with improvement in the pons at age 7 years (E3–5, white double-lined arrow) and significant improvement in the cerebellum at ages 10 
and 12 years (E4–5, white double-lined arrows). Progressive cerebellar atrophy is also seen between ages 2 and 7 years (E1–3), with improvement 
in subsequent MRIs done at ages 10 and 12 years (E4–5)
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Fig. 2 Brain MRI of Patient 2 from age 2 to 6 years. T2-weighted images are shown at 2 years (column 1: A1–E1), 3 years (column 2: A2–E2), 
4 years (column 3: A3–E3) and 6 years (column 4: A4–E4). Sagittal (panel A) images show mild thinning of the corpus callosum (white arrowhead) 
but otherwise normal midline structures. In panels B, C, D and E, delayed myelination is appreciated, with complete myelination achieved 
only at age 6 years (B4, C4, D4 and E4)
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L-isomer of folinic acid. Notably, folinic acid can also be 
prescribed as a mixture of both the biologically active 
L-isomer and the inactive D-isomer, however, reports 
show that a better outcome may be associated with the 
use of only the L-folinic acid compound [11].

In Patient 1, the initial dose of oral folinic acid of 2 mg/
kg/day did not lead to notable improvements, and there-
fore within a month, the dose was increased to 5 mg/kg/
day, which resulted in a dramatic improvement of neu-
rological features. The patient’s bulbar symptoms disap-
peared, weakness and ataxia began to subside, and over 
the next 8  months, he gradually began to walk inde-
pendently, while his speech comprised 4–5 meaning-
ful words. His dose of oral folinic acid was then slowly 
increased to 8  mg/kg/day. The severity and frequency 
of seizures decreased from dozens per day to 0–3 brief 
atonic and focal seizures with impaired awareness, 
and the antiepileptic therapy was reduced to two AEDs 
which are presumed to have a minimal anti-folate effect 
(levetiracetam and lamotrigine). Any attempt to further 
modify/reduce antiepileptic therapy would result in the 
aggravation of seizures. During folinic acid treatment, his 
serum folate concentration remained within the normal 
range, with values measured at 17.1 ngr/ml (normal 3.1–
20.5 ngr/ml) at 12 years of age.

On the latest neurological examination at age 12 years, 
the patient presented with cerebellar signs, while bulbar 
and pyramidal signs were completely resolved. Cerebel-
lar ataxia and hypotonia appeared milder, and he could 
walk and perform simple motor tasks independently. His 
behavioral abnormalities subsided, however, no signifi-
cant improvement in expressive language was observed. 
Follow-up brain MRI at 10  years of age showed pro-
gression of both supra- and infratentorial myelination 
(Fig.  1A4–E4), with a further improved myelination on 
the latest MRI at age 12 years (Fig. 1A5–E5). Brain MRS 
also improved, with normalization of the white matter 
choline peaks for age.

In Patient 2, neurological signs completely resolved 
after 3  months of treatment with 2  mg/kg/day of oral 
folinic acid. The patient has since been symptom-free and 
developing normally. Follow-up brain MRI at 3 years of 
age showed amelioration of the abnormal cerebral and 
cerebellar white matter signal, but without complete 
normalization of myelination (Fig. 2A2–E2). Folinic acid 
oral dose was then gradually increased to 7  mg/kg/day. 
Brain MRI at 4 years of age showed further improvement 
(Fig. 2A3–E3), and at 6 years of age myelination appeared 
normal (Fig.  2A4–E4). Her latest neurological examina-
tion at 6  years of age was normal. Her levels of serum 
folate also remained within the normal range, with the 
latest value at 6 years of age measuring 15.8 ngr/ml (nor-
mal range: 3,1–20.5 ngr/ml).

Literature review
Our review of the pre-treatment clinical and brain MRI 
findings among 31 reported FOLR1-related patients 
(Table  1) revealed no notable genotype–phenotype 
correlations.

The age of the disease onset among the reported 
patients ranged from 3  months [2] to 3  years and 
2  months [12], but in most cases, onset was between 
1 year and 2.5 years of life. The commencement of folinic 
acid treatment ranged from ages 12  months [13] to 
33 years [14]. Likewise, the time interval between onset 
of symptoms and folinic acid treatment initiation among 
patients ranged from almost immediately in two patients 
[1, 13] to a delay of more than 31  years in the oldest 
reported patient [14]. On average, the delay in therapy 
was 2–10 years.

The earliest reported symptoms were psychomotor 
regression and cerebellar ataxia. Epileptic seizures usu-
ally appeared afterwards, rarely before 18 months of age, 
and were of different types. They were not documented 
in three reported patients [1, 13, 15], while all the other 
patients manifested various combinations of myoclonic, 
atonic, tonic–clonic, tonic, absence seizures, epileptic 
spasms [10, 13], and/or focal seizures with and without 
impaired awareness. The most common were myoclonic 
seizures, observed in all but four patients [2, 13, 16, 17]. 
The seizures were commonly described as drug-resist-
ant, of high frequency, and frequently evolving to status 
epilepticus.

Cerebellar signs were described in all patients and 
were typically accompanied by other neurological signs. 
Extrapyramidal motor signs were also present in 10 
patients [1, 2, 12, 13, 16, 18, 20, 21]. Four patients had 
accompanied bulbar signs [14, 18], and 13 patients had 
accompanied pyramidal signs [1, 2, 9, 10, 18, 19]. Autistic 
behavioral features were observed in 18 patients [1, 2, 12, 
13, 17, 19–22]. Congenital microcephaly was described 
in one patient [2], while acquired microcephaly was 
noted in five patients [2, 17, 21]. Head circumference was 
normal in all other patients.

The majority of patients had supratentorial hypomy-
elination of various degrees, with or without cerebellar 
atrophy [1, 2, 10, 12, 14, 18–21]. Cerebellar atrophy was 
absent in seven patients [12, 13, 15, 16, 22]. Four patients 
also had basal ganglia calcifications [9, 16, 21, 23], one 
patient had accompanied bilateral temporal cortical lami-
nar necrosis and ulegyria [10], while one other patient 
had white matter encephalomalacia [17]. Two patients 
had no myelin abnormalities but cerebellar atrophy with 
or without cerebral calcifications [2, 9], and one had cer-
ebral cortical atrophy only [22]. Delayed myelination with 
or without cerebellar atrophy was seen in four patients [2, 
13]. Apart from the two patients described in this study, 
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infratentorial hypomyelination was described only in one 
patient [23], while thinning of the corpus callosum was 
reported in one other [2]. MRS values before treatment 
showed low white matter choline and/or inositol in all 
patients except for five, which were normal [2, 15, 19].

The effect of folinic acid treatment has been associated 
with various clinical and radiological outcomes (Table 1). 
Regarding folinic acid administration, the recommenda-
tion is to give 2–10 mg/kg/day orally, with the suggestion 
to change the route of administration to intravenous or 
intrathecal if the response is suboptimal [24]. However, 
the dose of folinic acid and route of administration vary 
in different reports from 1.7 mg/kg/day orally [19] to the 
combination of 8.9 mg/kg/day orally with 500 mg/week/
intravenously [23] (Table  1). Incomplete amelioration 
was accomplished in all but four patients [2, 18], regard-
less of the route of folinic acid administration. It should 
be noted that the lack of response to treatment in these 
patients was suggested to result from POLG1 mutations 
additionally found in one patient [2], and a long delay in 
diagnosis (13–15 years) in the other three patients [18]. 
Interestingly, in the two oldest reported patients who 
had a delay in diagnosis of 27 years and 31 years respec-
tively, administration of oral folinic acid at 2 mg/kg/day 
resulted in a marked reduction in the frequency of sei-
zures, permitting a reduction of antiepileptic therapy and 
improvement of quality of life [14]. The best treatment 
results were observed in children who were diagnosed 
and treated early [1, 2, 12]. In addition to Patient 2 from 
the current study, complete clinical recovery was only 
accomplished in one other patient for whom folinic acid 
therapy was started immediately after the symptom onset 
in the second year of life [1]. Complete recovery of both 
clinical and radiological features, such as seen in Patient 
2 of this study, has never been documented.

Discussion
The siblings we describe here provide strong support for 
the effectiveness and importance of folinic acid treatment 
initiation at a very early age in patients with pathogenic 
variants in FOLR1 and neurodegeneration due to cer-
ebral folate deficiency. The younger sibling (Patient 2) is 
the first reported patient with neurodegeneration due to 
cerebral folate deficiency who demonstrated complete 
recovery of both clinical features and brain MRI abnor-
malities following oral folinic acid treatment started just 
after symptom onset.

Contrarily, the 6-year delay in diagnosis of Patient 1 
can explain his incomplete clinical recovery. It is impor-
tant to note that the main cause for the delay in diagno-
sis was the inability to provide timely access to metabolic 
and genetic testing, as the patients were treated in a 
department without the necessary resources to perform 

this testing on a clinical basis. Therefore, genetic analyses 
were only performed later on a research basis, and by the 
time of genetic diagnosis, his neurological impairments 
had more substantially progressed. In Patient 2, genetic 
analysis was performed near the beginning of symptom 
onset at 2  years of age, and the immediate initiation of 
folinic acid therapy led to the complete resolution of both 
clinical and MRI abnormalities.

Additionally, the prolonged exposure of Patient 1 to a 
plethora of antiepileptic drugs for intractable epilepsy 
prior to establishing the correct diagnosis may have 
resulted in negative effects on his disease course. Indeed, 
some AEDs may have a harmful anti-folate effect, includ-
ing valproate, phenobarbital, primidone, phenytoin, car-
bamazepine, oxcarbazepine, topiramate, gabapentin, 
and pregabalin [25, 26]. However, specific AEDs such as 
lamotrigine, levetiracetam, clobazam, and clonazepam 
have not demonstrated notable interactions with cerebral 
folates [26].

Based on the published literature, psychomotor regres-
sion with cerebellar ataxia starting in the second to third 
year of life, along with refractory epilepsy with mostly 
myoclonic seizures and radiological findings of cerebral 
hypomyelination with or without cerebellar atrophy 
should raise suspicion of this disease. Other clinical signs 
such as autistic behavioral features, deceleration of head 
growth, frequent occurrence of status epilepticus, and 
radiological findings of brain calcifications can be seen as 
well and do not exclude the possibility of this disorder/
diagnosis. Furthermore, due to the phenotypic variability 
associated with this disease and other inherited neuro-
logical diseases, all individuals with drug-resistant epi-
lepsy should undergo genetic testing.

Prior to our report, a complete resolution of neuro-
logic symptoms was only accomplished in one patient, 
however, their MRI features did not fully resolve, with 
the preexisting cerebellar atrophy remaining despite the 
therapy [1, 2]. This patient was treated with both oral and 
intravenous folinic acid, including 5 mg/kg/day orally and 
100 mg/week intravenously [2].

Brain MRI features improved in both of our patients 
with oral folinic acid therapy. Specifically, white matter 
T2-signal hyperintensity started to decrease and the vol-
ume of both supra- and infratentorial structures began 
to increase after treatment for two years in Patient 1, and 
one year in Patient 2. After four years of treatment, the 
brain MRI findings in Patient 1 did not yet normalize, 
but continued to improve. Moreover, brain MRS revealed 
normalization of the white matter choline peaks for age, 
in line with the reactivation of the myelination process 
[27]. The 5-year evolution of Patient 1’s brain MRI fea-
tures prior to treatment is the longest reported for this 
disease, showing progressive cerebral and cerebellar 
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atrophy together with a pattern of hypomyelination. In 
Patient 2, the level of myelination completely recovered 
after four years of treatment, demonstrating the first 
complete radiological recovery from this disease.

The route of folinic acid administration may be of 
importance when treating neurodegeneration due to cer-
ebral folate deficiency, given that FOLRα is necessary for 
the transfer of MTHF from the CSF to the brain paren-
chyma [2, 3]. In the absence of FOLRα, other transporters 
such as the reduced-folate-carrier and proton-coupled-
transporter may transport MTHF across the blood–brain 
barrier, but due to their very low MTHF affinity, there is 
a need for high plasma MTHF concentrations (i.e., high 
folinic acid doses) [2, 3]. However, the further deliv-
ery of exosomes with MTHF from CSF into the brain 
parenchyma likely exclusively depends on FOLRα, which 
could explain the lack of complete recovery despite the 
application of high doses of folinic acid and despite the 
normalization of MTHF concentration in CSF [2, 3, 12]. 
Since even high doses of folinic acid are typically unable 
to fully overcome the lack of FOLRα, new therapeutic 
strategies are needed. These may include the application 
of FOLRα + exosomes into the CSF as proposed by Grapp 
et al. [3]. With recent advances in gene therapy develop-
ment, this avenue is certainly also very appealing.

Although both siblings harbored the same homozy-
gous pathogenic variant in FOLR1, they exhibited phe-
notypic variability as the older sibling demonstrated an 
earlier disease onset with a more severe disease course. 
It has been proposed that even in the presence of the 
same FOLR1 pathogenic variants, the variable pheno-
typic severity may reflect the individual variability in the 
timing of fetal FOLRβ inactivation, different potency of 
FOLRβ functioning, variable residual FOLRα functions, 
or variable capacity of alternative folate transport mecha-
nisms [2]. It may also reflect the different hypothesized 
processes through which folates contribute to myelin 
formation [2, 5]. Peripheral nerves were intact in our 
patients, while peripheral neuropathy was found in three 
reported patients, further suggesting a link between 
FOLRα and Schwann cells homeostasis [2, 10]. Regard-
less of the specific pathogenic mechanisms, folinic acid 
is the only disease-modifying therapy for the clinical and 
radiological manifestations of cerebral folate deficiency, 
and these cases demonstrate the importance of early 
treatment for the amelioration of disease features.

Conclusions
We report a novel pathogenic variant in FOLR1 in 
two Serbian siblings with clinical and brain MRI pres-
entations consistent with neurodegeneration due to 
cerebral folate transport deficiency, along with the 

response to treatment and long-term follow-up, there-
fore contributing to the literature delineating the natu-
ral history of the disease. The youngest sibling is the 
first patient reported for whom complete recovery of 
both clinical and brain radiological abnormalities was 
achieved with oral folinic acid treatment, suggesting 
that early oral therapy may be sufficient to treat this 
condition compared to other more invasive routes of 
administration.

Furthermore, in patients with genetically undiag-
nosed hypomyelination, FOLR1 should be investigated 
promptly and included in all leukodystrophy panels 
to ensure early treatment with folinic acid and opti-
mize clinical outcomes. Finally, these cases highlight 
the importance of universal access to genetic testing, 
to ensure that treatable conditions are promptly diag-
nosed and treatment initiated early to optimize clinical 
outcomes.
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