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Abstract 

Background Intake‑balance assessments measure energy intake (EI) by summing energy expenditure (EE) with con‑
current change in energy storage (ΔES). Prior work has not examined the validity of such calculations when EE is esti‑
mated via open‑source techniques for research‑grade accelerometry devices. The purpose of this study was to test 
the criterion validity of accelerometry‑based intake‑balance methods for a wrist‑worn ActiGraph device.

Methods Healthy adults (n = 24) completed two 14‑day measurement periods while wearing an ActiGraph accel‑
erometer on the non‑dominant wrist. During each period, criterion values of EI were determined based on ΔES 
measured by dual X‑ray absorptiometry and EE measured by doubly labeled water. A total of 11 prediction methods 
were tested, 8 derived from the accelerometer and 3 from non‑accelerometry methods (e.g., diet recall; included 
for comparison). Group‑level validity was assessed through mean bias, while individual‑level validity was assessed 
through mean absolute error, mean absolute percentage error, and Bland–Altman analysis.

Results Mean bias for the three best accelerometry‑based methods ranged from ‑167 to 124 kcal/day, versus ‑104 
to 134 kcal/day for the non‑accelerometry‑based methods. The same three accelerometry‑based methods had 
mean absolute error of 323–362 kcal/day and mean absolute percentage error of 18.1‑19.3%, versus 353–464 kcal/
day and 19.5‑24.4% for the non‑accelerometry‑based methods. All 11 methods demonstrated systematic bias 
in the Bland–Altman analysis.

Conclusions Accelerometry‑based intake‑balance methods have promise for advancing EI assessment, but ongoing 
refinement is necessary. We provide an R package to facilitate implementation and refinement of accelerometry‑
based methods in future research (see paulhibbing.com/IntakeBalance).
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Background
Energy intake (EI) plays a key role in regulating body 
mass [1]. However, accurate measures of EI are difficult 
to obtain in free-living environments. Self-report instru-
ments are standard tools for this purpose, but they are 
associated with a high degree of error [2–5], leading to 
many persistent challenges in dietary research and prac-
tice [6–9]. Thus, there is an ongoing need to develop 
more valid and feasible measures of EI that avoid self-
report [10, 11].

The “intake-balance” method is a leading alternative 
to self-report [12]. This method draws from the princi-
ple of energy balance, which is a model of the relation-
ship between energy expenditure (EE), EI, and changes 
in energy storage (ΔES). The relationship is based on the 
First Law of Thermodynamics, which states total energy 
in a system remains constant, although it may be con-
verted from one form to another [13, 14]. When applied 
to energy balance, the Law dictates that ΔES is negative 
(i.e., weight loss) when EE exceeds EI, while ΔES is posi-
tive (i.e., weight gain) when EI exceeds EE. The nature of 
this relationship (ΔES = EI – EE) allows any of the varia-
bles to be calculated based on the others. Thus, it is possi-
ble to back-calculate EI based on observed values for ΔES 
and EE (i.e., EI = ΔES + EE). Normally, this is done using 
gold standard methodology for assessing ΔES (repeated 
scans by dual energy X-ray absorptiometry; DXA) and 
EE (doubly labeled water; DLW) [14–16]. However, DLW 
is cost-prohibitive and labor-intensive to use [17]. These 
factors have led to increased interest in the use of other 
EE assessment methods within the intake-balance frame-
work [18–21].

Accelerometry is a promising surrogate for DLW [22], 
but there is currently an evidence gap regarding its use in 
the intake-balance framework. Preliminary applications 
have been focused on consumer-grade devices and oth-
ers for which the manufacturers provide limited informa-
tion about the prediction algorithms [18–20]. Thus, there 
is a need to increase the transparency and accessibility 
of device-based intake-balance assessments. Research-
grade devices may be especially useful for this purpose, 
given the growing emphasis on open-source methodol-
ogy when using such devices [23–26].

We recently demonstrated proof-of-concept for an 
open-source and accelerometry-based approach in an 
interventional setting [27]. However, the study was not 
designed to test criterion validity. The purpose of the pre-
sent study is to address that gap by testing the criterion 
validity of open-source accelerometry methods within 
the intake-balance framework. A secondary purpose is 
to compare the validity of these EI estimates to what was 
achieved by standard assessment techniques (self-report 

and related tools), as a means of contextualizing the 
accelerometer-based estimates in comparison to stand-
ard practice.

Methods
Participants
This is a secondary analysis of data from a prior obser-
vational study (clinicaltrials.gov registration number 
NCT04142281) [20]. Participants were 24 adults who 
gave written informed consent prior to beginning the 
study. The procedures were approved by the Children’s 
Mercy Kansas City Institutional Review Board.

Protocol
The parent study followed a repeated measures design. 
Specifically, participants completed two 14-day DLW 
measurement periods, separated by a 14-day isotope 
washout period. At the start of each DLW measure-
ment period, participants came to the lab in the morning 
(before 09:00) after an overnight fast. Their visit included 
body composition assessment via DXA (Lunar iDXA, GE 
Healthcare, Chicago, IL, USA) followed by DLW dos-
ing. For the DLW dosing, two urine samples were col-
lected, with 1–2 voids in between. The first sample was 
collected prior to ingesting the isotopes to determine 
background isotope abundance. The second was taken 
4.5–5.0  h afterward. Participants were then fitted with 
an ActiGraph GT9X to be worn on the non-dominant 
wrist for the ensuing 14  days in free living (ActiGraph 
LLC, Pensacola, FL).

During the two-week free-living assessment, partici-
pants provided a third urine sample on Day 7. They also 
completed 2–3 diet recall surveys in which they reported 
all food and drink consumed the previous day. As 
described by Shook et al. [20], the multipass survey meth-
ods were carefully designed and consistent with standard 
practice, including rigorous training for both study staff 
and participants [28–31]. The surveys were administered 
by a registered dietician via telephone, using the Nutrient 
Data System for Research Software, version 2017 [28]. 
Survey delivery was standardized across participants to 
ensure consistency and reduce risk for response bias. All 
surveys were administered on randomly selected non-
consecutive days, including at least one weekday and one 
weekend day.

At the conclusion of the free-living period, partici-
pants came back to the lab to return their ActiGraph 
monitor, provide a fourth urine sample, and have a sec-
ond DXA scan. The dates and times of all urine samples 
were logged, and samples were stored in a -80°C freezer 
until study completion. The samples and logs were then 
shipped to Pennington Biomedical Research Center 
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(Baton Rouge, LA, USA) for batch analysis in their Mass 
Spectrometry Core. ActiGraph data were downloaded 
and stored in raw acceleration format (.gt3x files) and 
“activity count” format (.agd files, in 60-s epochs).

Criterion measure of EI
Criterion values for EI were derived by summing EE 
(DLW) and ΔES (DXA). EE was determined by measur-
ing the isotope elimination rates in the urine samples, 
which were then used to calculate total EE, expressed as 
a daily average (kcal/day) [17, 32]. As shown in Eq. 1 [18], 
ΔES was determined from changes in fat mass (ΔFM, in 
kg) and fat-free mass (ΔFFM, in kg), with scaling for the 
duration of the measurement period (i.e., 14 days).

Comparison measures of EI
A total of 11 methods were tested against the criterion 
values. Eight were derived from the wrist-worn Acti-
Graph data, and three were from other techniques. 
Below, each method is described in greater detail.

Accelerometry‑based measures
The eight ActiGraph methods were subdivided into four 
pairs. The first pair included the Hildebrand linear [33, 34] 
and non-linear [35] methods, both of which were regres-
sion-based methods predicting oxygen consumption 
 (VO2) from accelerometer data collected at the non-dom-
inant wrist. The calculations were made after combining 
all three axes of acceleration data (in milli-gravitational 
units) into a single variable called the Euclidian Norm 
Minus One (ENMO; Eq. 2). Negative values were rounded 
up to 0, and second-by-second averages were calculated. 
The linear method was a piecewise function, as shown in 
Eq.  3. The non-linear method was a power function, as 
shown in Eq. 4. Due to the lack of intercept in the non-
linear method, a floor value of 3.0 ml/kg/min was applied, 
consistent with intended use [35]. The same lower bound 
was applied for the linear method. For both methods, a 
ceiling of 70  ml/kg/min was applied. Predictions were 
generated each second for both methods, then smoothed 
by calculating minute-level averages. Lastly,  VO2 was 
converted to kcal assuming a respiratory quotient of 0.85 
(4.862  kcal/L from the table of Lusk [36]). The assumed 
respiratory quotient was chosen due to its prevalence in 

(1)�ES (kcal/day) = 1020∗�FFM+9500∗�FM
14

EE research and the limited amount of accompanying 
error, relative to individualized values calculated based on 
dietary intake among weight-stable individuals consum-
ing a western diet [37, 38].

The second pair of accelerometry-based methods came 
from Hibbing et  al. [39], who presented two-regression 
methods for the left and right wrists. Both versions were 
tested in the present study by applying them to the non-
dominant wrist data. (The rationale and implications of 
this approach are discussed later.) Like the Hildebrand 
methods, the two-regression methods took second-by-
second ENMO as input. Predictions were generated in 
three steps, beginning with application of a sedentary 
cut point. For non-sedentary observations, a second 
cut-point was then applied to differentiate continuous 
walking and running from intermittent activity. The lat-
ter cut-point was based on coefficient of variation in the 
signal, calculated with a specialized sliding window tech-
nique described elsewhere [39, 40]. Briefly, the sliding 
window technique involved calculating the coefficient of 
variation among each data point and various combina-
tions of its preceding and succeeding data points, then 
selecting the lowest value. After classifying each non-
sedentary data point as either continuous walking and 
running or intermittent activity, the third step involved 
predicting EE via activity-specific regression equations 
(for non-sedentary epochs) or a static EE value of 1.25 
METs (sedentary epochs). The left and right wrist meth-
ods are summarized in Eqs. 5 and 6, respectively, where 
CWR, CV, and IA represent continuous walking and run-
ning, coefficient of variation, and intermittent activity, 
respectively. All MET predictions were constrained using 
floor (1.25 METs) and ceiling (20 METs) limits. Predic-
tions were made for each second of data, then smoothed 
by calculating minute-level averages. Conversion to kcal 
was done assuming 1 MET = 3.5  ml/kg/min, then using 
the same  VO2 conversion factor described previously for 
a respiratory quotient of 0.85.

(2)ENMO milli − g =
√
X2 + Y 2 + Z2 − 1

(3)

VO2 (ml/kg/min) =

{

3.0 ∀ ENMO ≤ 44.8

7.28 + 0.032 ∗ ENMO ∀ ENMO > 44.8

(4)VO2

(

ml/kg/min
)

= 0.901 ∗ ENMO0.534

(5)METs =







Sedentary : 1.25 ∀ ENMO ≤ 45.6

CWR : −12.13+ 3.1381 ∗ log(ENMO) ∀ CV ≤ 19.4% ∩ ENMO > 45.6

IA : 0.81+ 0.03033 ∗ ENMO − 0.00005 ∗ ENMO2 + 0.00000002 ∗ ENMO3 ∀ CV > 19.4% ∩ ENMO > 45.6
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The third pair of methods came from Montoye et al. 
[41], who presented neural networks for the left and 
right wrists. Like the Hibbing methods, both neural 
networks were applied to the non-dominant wrist data 
from the present study. To do this, raw data were sum-
marized every 30 s using percentiles and lagged covari-
ance, which were then fed into the neural networks to 
predict METs. The values were constrained to a range 
of 1–20 METs and converted to  VO2 and kcal in the 
same manner described previously for the Hibbing 
two-regression methods.

The final pair of methods came from Staudenmayer 
et  al. [42], who presented a linear regression equation 
and random forest to predict METs from monitors 
worn on the dominant wrist. (The applicability of these 
dominant-specific models to the non-dominant data in 
this study is discussed later.) Both methods used identi-
cal features (n = 2) to predict METs every 15 s. The first 
feature was the standard deviation of the signal vector 
magnitude, where vector magnitude was the root sum 
of squares across all three axes. The second feature was 
the mean inclination angle of the monitor. The linear 
regression equation is given in Eq. 7. Predictions were 
treated in the same manner described for the Montoye 
methods, i.e., by truncating to a range of 1–20 METs, 
then converting to  VO2 and finally to kcal.

Other measures
Three additional EI estimation methods were tested. 
The first two were obtained from the body weight plan-
ner of the National Institute of Diabetes and Diges-
tive and Kidney Diseases (NIDDK) [43]. The estimates 
were extracted using methods described in our recent 
interventional proof-of-concept paper [27]. Specifi-
cally, we used the online interface (see niddk.nih.gov/
bwp) in expert mode with advanced controls activated. 
We filled in the measured body mass from Days 1 and 
14 of each measurement period, along with partici-
pant demographics and related information (including 
physical activity level, based on DLW and predicted 
basal metabolic rate from Schofield’s equations [44]). 
The Schofield equations were specific to each partici-
pant’s sex and age group, with estimates obtained using 
weight and height as predictors. Based on these obser-
vations and the time elapsed between them, the planner 

(6)METs =







Sedentary : 1.25 ∀ ENMO ≤ 60.2

CWR : −8.86+ 2.6564 ∗ log(ENMO) ∀ CV ≤ 21.2% ∩ ENMO > 60.2

IA : 0.82+ 0.03423 ∗ ENMO − 0.00004 ∗ ENMO2 + 0.00000004 ∗ ENMO3 ∀ CV > 21.2% ∩ ENMO > 60.2

(7)
METs = 1.89378+ 5.50821

(

SDvector magnitude

)

− 0.02705
(

mean inclination angle
)

then generated two predictions, one being for weight 
change (i.e., the predicted daily EI required for accom-
plishing the observed change in body mass over the 
course of the measurement period) and the other being 
for weight maintenance (i.e., the predicted EI required 
for maintaining the original body mass).

Lastly, we tested self-reported EI from the dietician 
administered recall surveys. Values were calculated 
for each participant by taking the mean of their survey 
responses. This was done separately for each of the two 
14-day measurement periods.

Accelerometer data processing and aggregation
Accelerometer data were screened for non-wear and 
sleep using the methods of Choi et  al. [45] and Tracy 
et  al. [46], respectively. Valid days were defined as hav-
ing ≥ 10  h of awake wear time, with invalid days (those 
with < 10 h of awake wear time) being excluded from the 
analysis. Participant-level screening was also performed, 
with participants being excluded if they did not have ≥ 4 
valid days. On valid days, basal EE values were imputed 
for minutes that were classified as non-wear or sleep. 
These values were calculated using Schofield’s equations 
with weight and height as predictors, again using the spe-
cific equations corresponding to each participant’s sex 
and age group [44]. After calculating total EE for each 

valid day, an average EE was calculated (kcal/day), which 
was then summed with ΔES to determine estimates of EI.

Statistical analysis
Participant characteristics were summarized using mean 
and SD for continuous variables and frequencies for cat-
egorical variables. Excess body fat was summarized using 
World Health Organization cutoffs of > 25% for males 
and > 35% for females [47, 48]. Dietary behavior was sum-
marized using the Healthy Eating Index, an instrument 
that scores diet quality on a scale from 0 to 100 [49, 50].

For each method, we used mixed effects regression to test 
three accuracy metrics, namely bias (i.e., predicted − DLW  ), 
absolute error (i.e., 

∣

∣predicted − DLW
∣

∣ ), and percentage 
error (i.e.,  |predicted−DLW |

DLW ∗ 100% ). Metrics were first cal-
culated for each participant occasion, then regressed on a 
null set of predictors with a random participant intercept. 
The latter formulation allowed the fixed-effect intercepts 
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to reflect a mean value when accounting for repeat testing 
within participants. Thus, the intercepts reflected mean bias, 
mean absolute error (MAE), and mean absolute percentage 
error (MAPE). A total of 33 models were fitted, correspond-
ing to the 3 accuracy metrics applied to 11 measures of EI. 
P-values were adjusted using the false discovery rate correc-
tion to account for the number of tests [51].

Error trends were further examined using Bland–Alt-
man methods for repeated measures [52–54]. To do 
this, we first extracted standard deviation (SD) of the 
random effects from the aforementioned mean bias 
models to facilitate calculating limits of agreement 
( mean bias ± 1.96 ∗ SD ). We also fitted additional mod-
els in which individual bias scores were regressed against 
criterion values from DLW, represented as a fixed effect. 
(The DLW values were used instead of the mean of DLW 
and predictions, because DLW is a criterion measure 
[55].) A random intercept effect was again included to 
account for repeat testing within participants. The slope, 
marginal  R2, and conditional  R2 of the resulting models 
were descriptively examined to assess the degree of sys-
tematic error for each method.

Hereafter, summary statistics are given as mean ± SD.

Results
Table  1 shows participant information. Accelerometer 
variables, EE values, and EI values are summarized in 
Table  2. Four male participants had a body fat percent-
age > 25% (range: 27.3-33.3%), and five female participants 
had a body fat percentage > 35% (range: 35.0-50.1%). The 
remaining participants fell in the ranges of 12.8-24.3% 

(males) and 22.6-34.1% (females). Across all recall assess-
ments, the Healthy Eating Index was 66.5 ± 14.9, consid-
erably higher than the national average of 58 (see https:// 
www. fns. usda. gov/ healt hy- eating- index- hei).

For five participants, self-report data were incom-
plete (n = 2) or missing altogether (n = 3). All available 
self-report data were used when presenting summary 
statistics (see Table  2), whereas only the 19 partici-
pants with complete data from both timepoints were 
included when presenting self-report data in the formal 
analyses. All other results (accelerometry-based and 
NIDDK) are presented for the full 24-person sample. 
When using the NIDDK Body Weight Planner, there 
were three instances where the physical activity level 
from DLW (i.e., total energy expenditure divided by 
Schofield predicted BMR) was less than the minimum 
allowable value in the online system (1.111). The mini-
mum value of 1.111 was used in those cases.

Figure 1 shows mean bias, MAE, and MAPE. Means 
and 95% confidence intervals are provided in the sup-
plementary material (see Table S1). The majority of 
methods tended to overestimate EI, with mean bias 
ranging from 104 kcal/day (NIDDK weight loss model; 
p = 0.31) to 586  kcal/day (Staudenmayer linear model; 
p < 0.001). In contrast, the Hildebrand and self-report 
methods tended to underestimate, with mean bias 
ranging from -302  kcal/day (Hildebrand linear model; 
p < 0.001) to -104 kcal/day (self-report; p = 0.35).

Results showed a general distinction between the 
six best-performing methods (Hildebrand non-linear 
method, both Hibbing methods, both NIDDK meth-
ods, and self-report) and the five remaining methods 
(Hildebrand linear method, both Montoye methods, 
and both Staudenmayer methods). Specifically, the 
distinctions between these groups were fairly consist-
ent when comparing mean bias (± 104–167 for the six 
best versus ± 301–586  kcal/day for the five others), 
MAE (323–463 versus 425–607 kcal/day), and MAPE 
(18.1-24.4% versus 19.5-34.7%). Notably, the NIDDK 
method for weight loss had the lowest mean bias yet 
the fifth highest MAE, suggesting the favorable mean 
bias score was achieved through cancelation of over- 
and underestimates. In contrast, the NIDDK method 
for weight maintenance ranked highly for both mean 
bias and MAE.

Bland–Altman results are shown in Fig. 2. The stand-
ard deviation of bias scores was substantially higher 
for the NIDDK weight loss and self-report methods 
(611–619  kcal/day) than for the other methods (434–
467  kcal/day). Consequently, limits of agreement were 
much wider (total widths of 2396–2427 kcal/day versus 

Table 1 Summary of participant characteristics. Values are 
mean ± SD for continuous variables, and n (%) for categorical 
variables

BMI Body mass index, BMR Basal metabolic rate

Female (n = 14) Male (n = 10) Total (N = 24)

Age (y) 29.5 ± 6.1 32.4 ± 10.6 30.7 ± 8.2

Height (cm) 168.3 ± 7.8 176.7 ± 4.5 171.8 ± 7.8

Weight (kg) 68.7 ± 9.8 80.7 ± 10.7 73.7 ± 11.6

BMI (kg/m2) 24.4 ± 4.5 25.8 ± 3.0 25.0 ± 4.0

Weight Status
 Healthy Weight 8 (57%) 5 (50%) 13 (54%)

 Overweight 4 (29%) 4 (40%) 8 (33%)

 Class 1 Obese 2 (14%) 1 (10%) 3 (12%)

Schofield BMR (kcal/
day)

1,457 ± 112 1,843 ± 134 1,618 ± 228

Fat Free Mass (kg) 45.5 ± 5.1 62.3 ± 7.7 52.5 ± 10.4

Fat Mass (kg) 23.5 ± 8.8 18.4 ± 7.9 21.4 ± 8.7

Body Fat (%) 33.4 ± 8.7 22.4 ± 7.8 28.8 ± 9.9

https://www.fns.usda.gov/healthy-eating-index-hei
https://www.fns.usda.gov/healthy-eating-index-hei
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1700–1829  kcal/day), indicating worse individual-level 
validity. Systematic error was evident for all meth-
ods, yet in varying degrees. All slopes were negative, 
with magnitudes of 0.34–0.43 for the accelerometry-
based methods versus 0.56–0.63 for the NIDDK and 
self-report methods. Marginal  R2 was 0.36–0.46 for 
the Montoye, Staudenmayer, and NIDDK weight loss 
methods, versus 0.55–0.65 for the others. In contrast, 
conditional  R2 was 0.82–0.88 for all methods except the 
NIDDK weight loss method (0.76).

Discussion
Summary and key findings
In this study, we evaluated the criterion validity of vari-
ous methods for assessing EI. Our primary focus was 

the use of accelerometry-based methods for wrist-worn 
activity monitors, applied within the intake-balance 
framework. The strongest evidence of criterion valid-
ity (both group- and individual-level) was seen for the 
Hildebrand non-linear method and the two Hibbing 
methods. It is difficult to fully explain why these meth-
ods exceled, but likely factors include the robustness of 
the original calibration protocols [33, 39] and advan-
tages of the modeling structures themselves (e.g., low 
susceptibility to overfitting).

A secondary purpose of our study was to compare the 
validity of accelerometry-based methods to that of prom-
inent non-accelerometry-based methods (i.e., NIDDK 
and self-report). This allowed examination of the degree 
to which accelerometry-based methods may improve on 

Table 2 Summary of accelerometer data, energy expenditure, and energy intake. Values are mean ± SD. N = 24, except where 
otherwise noted

DLW Doubly labeled water, DXA Dual energy X-ray absorptiometry, 2RM Two regression model, ANN Artificial neural network
a  Calculated as sum of minute-by-minute values for each calendar day (typically with some sleep time in the morning and some in the evening, i.e., not reflective of 
continuous overnight sleep intervals)
b  Calculated after excluding missing participant values from the first and second assessments (n = 5 and n = 3, respectively)

First Assessment Second Assessment Both Assessments

Sleep Time (h/day)a 8.7 ± 0.9 8.6 ± 1.0 8.6 ± 0.9

Non-Wear Time (h/day) 0.2 ± 0.3 0.5 ± 0.7 0.4 ± 0.5

N Days (DLW/DXA) 14.0 ± 0.0 14.0 ± 0.2 14.0 ± 0.1

N Valid Days (accelerometer) 13.0 ± 0.7 13.1 ± 0.4 13.1 ± 0.6

ΔEnergy Storage by DXA (kcal/day) ‑145 ± 434 ‑89 ± 413 ‑117 ± 420

Energy Expenditure (kcal/day)
 DLW 2,524 ± 619 2,474 ± 512 2,499 ± 562

 Hildebrand Linear Model 2,207 ± 349 2,188 ± 358 2,197 ± 350

 Hildebrand Non‑Linear Model 2,346 ± 371 2,318 ± 378 2,332 ± 371

 Hibbing Left Wrist 2RM 2,622 ± 415 2,596 ± 416 2,609 ± 412

 Hibbing Right Wrist 2RM 2,637 ± 422 2,610 ± 423 2,623 ± 418

 Montoye Left Wrist ANN 2,966 ± 454 2,929 ± 446 2,948 ± 445

 Montoye Right Wrist ANN 3,089 ± 514 3,045 ± 518 3,067 ± 511

 Staudenmayer Linear Model 3,091 ± 483 3,079 ± 490 3,085 ± 481

 Staudenmayer Random Forest 3,089 ± 506 3,061 ± 509 3,075 ± 503

Energy Intake (kcal/day)
 DLW 2,379 ± 917 2,385 ± 663 2,382 ± 792

 Hildebrand Linear Model 2,062 ± 516 2,099 ± 493 2,081 ± 500

 Hildebrand Non‑Linear Model 2,201 ± 528 2,229 ± 500 2,215 ± 509

 Hibbing Left Wrist 2RM 2,477 ± 564 2,507 ± 523 2,492 ± 539

 Hibbing Right Wrist 2RM 2,492 ± 567 2,521 ± 525 2,506 ± 541

 Montoye Left Wrist ANN 2,821 ± 609 2,840 ± 560 2,831 ± 579

 Montoye Right Wrist ANN 2,944 ± 647 2,956 ± 592 2,950 ± 613

 Staudenmayer Linear Model 2,946 ± 651 2,990 ± 623 2,968 ± 630

 Staudenmayer Random Forest 2,944 ± 645 2,972 ± 607 2,958 ± 620

 Body Weight Planner (Weight Loss) 2,556 ± 670 2,416 ± 629 2,486 ± 647

 Body Weight Planner (Weight Maintenance) 2,562 ± 579 2,470 ± 524 2,516 ± 548

 Self‑Reportb 2,117 ± 538 2,268 ± 626 2,196 ± 583
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the current status quo when measuring EI. The Hilde-
brand non-linear and Hibbing methods showed promise 
in this area as well. Specifically, their group-level validity 
was comparable to the non-accelerometry-based meth-
ods, and their individual-level validity was generally bet-
ter (including substantial advantages over the self-report 
and NIDDK weight loss methods).

Because the validity of each method in our study was 
anchored to criterion estimates, the analyses provide 
valuable insight about the degree of error that can be 

expected when applying the methods in the field. Taken 
together, the results suggest wrist-worn accelerometry 
methods (i.e., the Hildebrand non-linear and Hibbing 
methods) have competitive validity compared to tradi-
tional measures of EI. Below, we discuss the importance 
of this study and the accelerometry-based intake-bal-
ance method, along with sources of error, opportunities 
for continued development, caveats for interpreting the 
present findings, and considerations when selecting a 
method to assess EI in future research.

Fig. 1 Error metrics for each measure. Values are shown for: A mean bias; B mean absolute error; and C mean absolute percentage error. Error bars 
are standard error
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Fig. 2 Bland–Altman plots comparing criterion values from doubly labeled water (DLW) against: A the Hildebrand linear model (HLM); B 
the Hildebrand non‑linear model (HNLM); C the Hibbing left wrist (LW) two‑regression model; D the Hibbing right wrist (RW) two‑regression model; 
E the Montoye LW neural network; F the Montoye RW neural network; G the Staudenmayer linear model (LM); H the Staudenmayer random forest 
(RF); I the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) body weight planner for weight loss (WL); J the NIDDK body 
weight planner for weight maintenance (WM); K self‑reported values from dietician‑administered recall surveys. Note: The N for self‑report was 19 
rather than 24, due to exclusion of 5 participants who did not complete surveys at both timepoints
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Importance of the study and method
To our knowledge, the present study is the first criterion 
validation of device-based EI estimates when using open-
source methodology for a widely used research-grade 
device (ActiGraph GT9X). This is a step forward, as prior 
studies have either used closed-source devices [18, 20], 
or else lacked a criterion measure [27]. The use of open-
source methodology is crucial for upholding FAIR prin-
ciples (Findability, Accessibility, Interoperability, and 
Reusability) [56, 57] and for combating widespread usa-
bility issues in accelerometry [58]. It also provides meth-
odological transparency, in contrast to the well-known 
“black box” design of most consumer-grade devices [59]. 
To facilitate ongoing development and application of the 
accelerometry-based intake-balance methods through 
open-source channels, we provide an R package and 
vignette by which the major steps can be automated [60].

The accelerometry-based intake-balance approach 
offers several key benefits compared to the standard 
approach with DLW. One of the biggest examples is its 
relatively low cost, which makes it accessible to a wider 
range of researchers. A related benefit is that the acceler-
ometry-based method does not require urine collections 
or isotope analyses, and thus places lower burden on both 
participants and researchers. Together, these benefits 
make the accelerometer-based intake balance approach 
highly scalable for large studies. However, despite its con-
ceptual value and the empirical promise that was shown 
in this study, there are also important considerations that 
may require additional research, as discussed below.

Sources of error and opportunities for refinement
During non-wear periods, the accelerometer-based intake-
balance method requires imputation of EE values. For the 
present study, this was done using estimates of basal meta-
bolic rate from Schofield’s equations [44]. The latter choice 
was made both for consistency with our original proof-of-
concept study [27] and because the Schofield equations 
remain widely used in accelerometry and physical activity 
research [61–63]. Nevertheless, other equations (particu-
larly Henry’s [64]) are more common in clinical nutrition 
research. This represents an opportunity for further test-
ing and refinement of the accelerometer-based intake-bal-
ance method, through future studies that test the impact 
of using different prediction equations. Similarly, our pro-
cedures involved an assumed respiratory quotient of 0.85 
when converting  VO2 to kcal. While this is common prac-
tice [38] and consistent with our original proof-of-concept 
study [27], an alternative approach would be to individu-
alize the values by using calculated food quotient in place 
of the assumed respiratory quotient [37]. Future work 
could explore how estimates of EI change when using the 
assumed versus individualized values.

Handedness and sidedness are additional sources of 
error that may have impacted our results. In this study, 
participants wore devices on the non-dominant wrist. 
While this is the most common placement in wrist accel-
erometry, other placements are also widespread, includ-
ing placements on a specific side of the body without 
accounting for dominance [65]. Accordingly, wrist-based 
equations and models have been developed in differ-
ent ways, and there is no clear consensus concerning 
which way is best or how much cross-applicability exists 
between them. Prior research has frequently shown that 
EE and physical activity predictions are similar regard-
less of which wrist the device is worn on [39, 41, 66–69], 
and thus we chose not to restrict our analysis to meth-
ods that were specifically designed for the non-dominant 
wrist. The appropriateness of this decision was borne out 
by our results for the Hibbing methods (and, to some 
degree, the Montoye methods as well), where results 
were highly similar for the left-sided and right-sided ver-
sions. Nevertheless, further comments are warranted on 
issues of handedness and sidedness.

Both handedness and sidedness have theoretical impli-
cations for wrist accelerometry, the former because 
movement patterns may differ between the dominant 
and non-dominant wrists [70], and the latter because 
vertical axis orientation is reversed across wrists [71]. 
Together with the highly skewed population distribu-
tion of handedness [72], this makes it unclear how much 
measurement error is attributable to handedness versus 
sidedness. For example, a method that was calibrated for 
the non-dominant wrist may actually be better suited to 
the left side (regardless of dominance) unless left-handed 
individuals were oversampled in the original calibration. 
Conversely, a method for the right wrist may actually be 
better suited to the dominant wrist for the same reason.

While it is difficult to conduct a theoretical analysis 
that untangles the effects of handedness and sidedness 
on wrist accelerometry, it is easy to perform sensitivity 
analyses and determine if there are practically significant 
effects to begin with. This was a key reason for includ-
ing the Hibbing and Montoye methods in our study, and 
for testing the left-sided and right-sided versions of each 
method separately rather than using the left-sided model 
for right-handed participants and vice versa. As noted 
above, the results were generally quite similar regardless 
of which side the models were intended for. This suggests 
that issues of handedness and sidedness had minimal 
impact on the data in this study. It may also suggest that 
none of the methods derived an advantage or disadvan-
tage from the degree of alignment between its original 
calibration protocol and that of the current study. Never-
theless, these possibilities cannot be fully verified, and our 
results should be interpreted with commensurate nuance.
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When considering the potential for measurement error 
in this study, it is also important to consider the nature 
of the protocol itself and the criterion measures. In par-
ticular, the present study protocol involved 14-day assess-
ment periods, which were ideal for DLW, yet only long 
enough to elicit small changes in the DXA measures 
(FFM and FM). Thus, the precision of DXA is important 
to consider as a source of measurement error. Prior work 
has shown the Lunar iDXA to yield rescan reliabilities of 
0.5% and 1.0% coefficient of variation for FFM and FM, 
respectively [73]. Given our sample means of 52.5 kg FFM 
and 21.4 kg FM, this would translate to potential meas-
urement errors of roughly 0.26 and 0.21 kg, respectively, 
ultimately propagating to EI errors up to ~ 165  kcal/day 
(see Eq.  1). Future studies are needed to validate the 
accelerometer-based intake-balance method over longer 
time periods, although it should be noted that study 
duration presents a tradeoff in this respect, with longer 
protocols being ideal for the assessment of ΔES while 
shorter protocols are ideal for the assessment of EE.

Caveats and implications for method selection
While the present findings show promise when using 
accelerometry-based methods to estimate EI, some 
caveats are important to consider when interpreting our 
results and selecting methods for future studies. One 
important caveat is that our results from self-report and 
accelerometry-based methods are not directly compa-
rable, due to the differing sample sizes (n = 19 for self-
report versus 24 for accelerometry) and granularities 
(2–3 measurements for self-report, versus continuous 
assessment for accelerometry) of the methods. These fac-
tors may influence the level of validity observed in our 
study. They are also reflective of each method’s strengths 
and weaknesses, which should be carefully considered 
when choosing a method in future studies. We have 
already listed several key benefits of the accelerometry-
based approach, with additional strengths including its 
objectivity and potential for collecting continuous data 
over extended periods. The key drawbacks of the accel-
erometry-based approach hinge on managing the large 
volumes of data collected. Some accelerometry-based 
methods can also be computationally intensive, leading 
to lengthy processing time. In contrast, the NIDDK and 
self-report methods offer convenient and straightforward 
means of application with a more manageable volume of 
data. However, they cannot support continuous measure-
ment, nor can they be conveniently automated. That is, 
self-report requires trained personnel to administer the 
surveys while the NIDDK method requires manual data 
entry for each participant, including a module to estimate 
physical activity level (unless an estimate is provided 
from another source such as accelerometry). Manual data 

entry is not only labor-intensive, but can also increase the 
risk of data entry errors. When selecting a method, fur-
ther considerations include cost, applicability in different 
populations such as children and adolescents, and bur-
den on participants and researchers (which may also have 
implications for quality control).

Our analysis demonstrates another important consid-
eration for method selection, namely that some methods 
(especially self-report) may perform well at the group 
level but not the individual level, as evidenced by small 
mean bias coupled with large MAE and wide limits of 
agreement. Such methods may be suitable in some situ-
ations but not others. For instance, individual-level valid-
ity may not be a precondition for studies focused on 
group comparisons, whereas it is essential for interven-
tions delivering individualized dietary prescriptions. It 
should also be noted that the present study design did not 
allow testing sensitivity to change for any of the methods. 
This makes it unclear which method is most recommend-
able for research questions focused on change over time. 
In general, these factors highlight that no single method 
is the best choice for every study, and selections should 
be made on a case-by-case basis. However, the present 
findings provide strong evidence that an accelerometry-
based approach can be a valid option in some cases.

Study strengths and limitations
A strength of the present study was the repeated meas-
ures design with criterion measures of EE and ΔES. 
Few other studies have included these rich characteris-
tics. However, the use of DLW also led to a small over-
all sample size, which was compounded by missing data 
for the self-report method. As noted previously, the pre-
cision of DXA may have been a source of error in the 
criterion measurements of ΔES. This limitation could 
potentially have been addressed by using magnetic reso-
nance imaging instead, although prior work has shown 
strong agreement between the latter method and DXA 
when assessing whole-body lean and adipose tissue [74]. 
Another limitation was that the sample characteristics 
were not representative of the general population, calling 
for further research. This includes a need to better under-
stand how the performance of the EI assessment meth-
ods may be related with factors such as diet quality and 
nutritional status.

Conclusions
Current accelerometry-based intake-balance methods 
can achieve similar group-level validity to the estab-
lished NIDDK and self-report methods, along with indi-
vidual-level validity that is as good or better than the 
latter methods. The most accurate accelerometry-based 
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methods are the Hildebrand non-linear method and the 
Hibbing two-regression models. However, all methods 
showed room for improvement. The accelerometry-
based methods can be implemented and refined using 
the R package developed as part of this study. Future 
work should examine validity in youth populations and 
evaluate accelerometry-based methods in terms of sen-
sitivity to change in an intervention setting. Accelerom-
etry-based methods for assessing EI have the potential 
to increase the accuracy and efficiency of research in 
nutrition and obesity.

Abbreviations
ΔES  Change in energy storage
ΔFFM  Change in fat‑free mass
ΔFM  Change in fat mass
DLW  Doubly labeled water
DXA  Dual energy X‑ray absorptiometry
EE  Energy expenditure
EI  Energy intake
ENMO  Euclidian norm minus one
MAE  Mean absolute error
MAPE  Mean absolute percentage error
METs  Metabolic equivalents
NIDDK  National Institute of Diabetes and Digestive and Kidney Diseases
SD  Standard deviation
VO2  Oxygen consumption

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12966‑ 023‑ 01515‑0.

Additional file 1: Table S1. Results of mixed effects modeling for 
estimated energy intake using doubly labeled water and dual energy 
X‑ray absorptiometry as the criterion measures. Values are mean (95% 
confidence interval).

Acknowledgements
The authors wish to thank Jennifer Rood of the Pennington Biomedical 
Research Center Mass Spectrometry Core for assisting with isotope analysis.

Authors’ contributions
PRH created the software package, performed the analysis, and drafted the 
manuscript. GJW, DR, and HWY assisted in various aspects of completing 
the parent project and revised the current manuscript. RPS designed and 
implemented the parent project, proposed the current analysis, and revised 
the current manuscript.

Funding
The study was supported in part by an unrestricted research grant from 
the International Life Sciences Institute of North America (ILSI NA) (to RPS). 
ILSI NA had no role in any aspect of the study, study design, or manuscript 
development. ILSI NA is a public, nonprofit foundation that provides a forum 
to advance understanding of scientific issues related to the nutritional quality 
and safety of the food supply by sponsoring research programs, educational 
seminars and workshops, and publications. ILSI NA receives support primar‑
ily from its industry membership. The opinions expressed herein are those 
of the authors and do not necessarily represent the views of the funding 
organization.

Availability of data and materials
Not applicable (secondary analysis).

Declarations

Ethics approval and consent to participate
This study was approved by the Children’s Mercy Kansas City Institutional 
Review Board. All participants provided written informed consent prior to 
participating.

Consent for publication
Not applicable.

Competing interests
All authors declare no competing interests.

Received: 9 February 2023   Accepted: 12 September 2023

References
 1. Johns DJ, Hartmann‑Boyce J, Jebb SA, Aveyard P. Diet or exercise 

interventions vs combined behavioral weight management programs: a 
systematic review and meta‑analysis of direct comparisons. J Acad Nutr 
Diet. 2014;114(10):1557–68.

 2. Schoeller DA. How accurate is self‑reported dietary energy intake? Nutr 
Rev. 1990;48(10):373–9.

 3. Archer E, Hand GA, Blair SN. Validity of U.S. nutritional surveillance: 
National Health and Nutrition Examination Survey caloric energy intake 
data, 1971–2010. PLoS One. 2013;8(10):e76632.

 4. Freedman LS, Commins JM, Moler JE, Arab L, Baer DJ, Kipnis V, et al. 
Pooled results from 5 validation studies of dietary self‑report instruments 
using recovery biomarkers for energy and protein intake. Am J Epidemiol. 
2014;180(2):172–88.

 5. McClung HL, Ptomey LT, Shook RP, Aggarwal A, Gorczyca AM, Sazonov 
ES, et al. Dietary intake and physical activity assessment: current tools, 
techniques, and technologies for use in adult populations. Am J Prev 
Med. 2018;55(4):e93–104.

 6. Winkler JT. The fundamental flaw in obesity research. Obes Rev. 
2005;6(3):199–202.

 7. Schoeller DA, Thomas D, Archer E, Heymsfield SB, Blair SN, Goran MI, et al. 
Self‑report‑based estimates of energy intake offer an inadequate basis for 
scientific conclusions. Am J Clin Nutr. 2013;97(6):1413–5.

 8. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, 
Sørensen TIA, et al. Energy balance measurement: when something is not 
better than nothing. Int J Obes. 2015;39(7):1109–13.

 9. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser 
ML, et al. Addressing current criticism regarding the value of self‑report 
dietary data. J Nutr. 2015;145(12):2639–45.

 10. Cade JE. Measuring diet in the 21st century: use of new technologies. 
Proc Nutr Soc. 2017;76(3):276–82.

 11. Doulah A, Mccrory MA, Higgins JA, Sazonov E. A systematic review of 
technology‑driven methodologies for estimation of energy intake. IEEE 
Access. 2019;7:49653–68.

 12. Ravelli MN, Schoeller DA. An objective measure of energy intake using 
the principle of energy balance. Int J Obes. 2021;45(4):725–32.

 13. Gilmore LA, Ravussin E, Bray GA, Han H, Redman LM. An objective 
estimate of energy intake during weight gain using the intake‑balance 
method. Am J Clin Nutr. 2014;100(3):806–12.

 14. de Jonge L, DeLany JP, Nguyen T, Howard J, Hadley EC, Redman LM, et al. 
Validation study of energy expenditure and intake during calorie restric‑
tion using doubly labeled water and changes in body composition. Am J 
Clin Nutr. 2007;85(1):73–9.

 15. Racette SB, Das SK, Bhapkar M, Hadley EC, Roberts SB, Ravussin E, et al. 
Approaches for quantifying energy intake and %calorie restriction during 
calorie restriction interventions in humans: the multicenter CALERIE 
study. Am J Physiol Endocrinol Metab. 2012;302(4):E441–8.

 16. Heymsfield SB, Peterson CM, Thomas DM, Hirezi M, Zhang B, Smith S, 
et al. Establishing energy requirements for body weight maintenance: 
validation of an intake‑balance method. BMC Res Notes. 2017;10(1):220.

https://doi.org/10.1186/s12966-023-01515-0
https://doi.org/10.1186/s12966-023-01515-0


Page 12 of 13Hibbing et al. Int J Behav Nutr Phys Act          (2023) 20:115 

 17. Speakman JR. The history and theory of the doubly labeled water tech‑
nique. Am J Clin Nutr. 1998;68(4):932S–938S.

 18. Shook RP, Hand GA, O’Connor DP, Thomas DM, Hurley TG, Hébert JR, 
et al. Energy intake derived from an energy balance equation, validated 
activity monitors, and dual x‑ray absorptiometry can provide acceptable 
caloric intake data among young adults. J Nutr. 2018;148(3):490–6.

 19. Ries D, Carriquiry A, Shook R. Modeling energy balance while cor‑
recting for measurement error via free knot splines. PLoS One. 
2018;13(8):e0201892.

 20. Shook RP, Yeh HW, Welk GJ, Davis AM, Ries D. Commercial devices provide 
estimates of energy balance with varying degrees of validity in free‑living 
adults. J Nutr. 2021;152(2):630–8.

 21. Gebel K, Ding D. Using commercially available measurement devices for 
the intake‑balance method to estimate energy intake: work in progress. J 
Nutr. 2022;152(2):373–4.

 22. Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment 
with accelerometers: new insights and validation studies: accelerometer 
validity. Obes Rev. 2013;14(6):451–62.

 23. Procter DS, Page AS, Cooper AR, Nightingale CM, Ram B, Rudnicka AR, 
et al. An open‑source tool to identify active travel from hip‑worn acceler‑
ometer, GPS and GIS data. Int J Behav Nutr Phys Act. 2018;15(1):91.

 24. John D, Tang Q, Albinali F, Intille S. An open‑source monitor‑independent 
movement summary for accelerometer data processing. J Meas Phys 
Behav. 2019;2(4):268–81.

 25. Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: a research 
community‑driven open source r package for generating physical activ‑
ity and sleep outcomes from multi‑day raw accelerometer data. J Meas 
Phys Behav. 2019;2(3):188–96.

 26. Carlson JA, Ridgers ND, Nakandala S, Zablocki R, Tuz‑Zahra F, Bellettiere 
J, et al. CHAP‑child: an open source method for estimating sit‑to‑stand 
transitions and sedentary bout patterns from hip accelerometers among 
children. Int J Behav Nutr Phys Act. 2022;19(1):109.

 27. Hibbing PR, Shook RP, Panda S, Manoogian ENC, Mashek DG, Chow LS. 
Predicting energy intake with an accelerometer‑based intake‑balance 
method. Br J Nutr. 2023;130(2):344–52.

 28. Thompson FE, Subar AF. Dietary assessment methodology. In: Coulston 
AM, Boushey CJ, Ferruzzi MG, Delahanty LM, editors. Nutrition in the pre‑
vention and treatment of disease. 4th ed. Academic Press; 2017. p. 5–48. 
Available from: https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ B9780 
12802 92820 00011. Cited 2022 Sep 19.

 29. Hebert JR, Ebbeling CB, Matthews CE, Hurley TG, Ma Y, Druker S, et al. 
Systematic errors in middle‑aged women’s estimates of energy intake: 
comparing three self‑report measures to total energy expenditure from 
doubly labeled water. Ann Epidemiol. 2002;12(8):577–86.

 30. Dwyer J, Ellwood K, Moshfegh AJ, Johnson CL. Integration of the continu‑
ing survey of food intakes by individuals and the National Health and 
Nutrition Examination Survey. J Am Diet Assoc. 2001;101(10):1142–1142.

 31. Posner BM, Smigelski C, Duggal A, Morgan JL, Cobb J, Cupples A. Valida‑
tion of two‑dimensional models for estimation of portion size in nutrition 
research. J Am Diet Assoc. 1992;92(6):738–42.

 32. Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jequier E. 
Energy expenditure by doubly labeled water: validation in humans 
and proposed calculation. Am J Physiol Regul Integr Comp Physiol. 
1986;250(5):R823–30.

 33. Hildebrand M, Van Hees VT, Hansen BH, Ekelund U. Age group compa‑
rability of raw accelerometer output from wrist‑ and hip‑worn monitors. 
Med Sci Sports Exerc. 2014;46(9):1816–24.

 34. Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw 
acceleration sedentary thresholds in children and adults. Scand J Med Sci 
Sports. 2017;27:1814–23.

 35. Ellingson LD, Hibbing PR, Kim Y, Frey‑Law LA, Saint‑Maurice PF, Welk 
GJ. Lab‑based validation of different data processing methods for 
wrist‑worn ActiGraph accelerometers in young adults. Physiol Meas. 
2017;38(6):1045–60.

 36. Lusk G. Animal calorimetry, twenty‑fourth paper: analysis of the oxidation 
of mixtures of carbohydrate and fat. J Biol Chem. 1924;59(1):41–2.

 37. Black AE, Prentice AM, Coward WA. Use of food quotients to predict 
respiratory quotients for the doubly‑labelled water method of measuring 
energy expenditure. Hum Nutr Clin Nutr. 1986;40(5):381–91.

 38. Berman ESF, Swibas T, Kohrt WM, Catenacci VA, Creasy SA, Melanson EL, 
et al. Maximizing precision and accuracy of the doubly labeled water 

method via optimal sampling protocol, calculation choices, and incorpo‑
ration of 17O measurements. Eur J Clin Nutr. 2020;74(3):454–64.

 39. Hibbing PR, Lamunion SR, Kaplan AS, Crouter SE. Estimating energy 
expenditure with ActiGraph GT9X inertial measurement unit. Med Sci 
Sports Exerc. 2018;50(5):1093–102.

 40. Crouter SE, Kuffel E, Haas JD, Frongillo EA, Bassett DR. Refined two‑
regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 
2010;42(5):1029–37.

 41. Montoye AHK, Conger SA, Connolly CP, Imboden MT, Nelson MB, Bock 
JM, et al. Validation of accelerometer‑based energy expenditure predic‑
tion models in structured and simulated free‑living settings. Meas Phys 
Educ Exerc Sci. 2017;21(4):223–34.

 42. Staudenmayer J, He S, Hickey A, Sasaki J, Freedson P. Methods to 
estimate aspects of physical activity and sedentary behavior from 
high‑frequency wrist accelerometer measurements. J Appl Physiol. 
2015;119(4):396–403.

 43. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, 
et al. Quantification of the effect of energy imbalance on bodyweight. 
Lancet. 2011;378(9793):826–37.

 44. Schofield WN. Predicting basal metabolic rate: new standards and review 
of previous work. Hum Nutr Clin Nutr. 1984;39:5–41.

 45. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer 
wear and nonwear time classification algorithm. Med Sci Sports Exerc. 
2011;43(2):357–64.

 46. Tracy JD, Acra S, Chen KY, Buchowski MS. Identifying bedrest using 24‑h 
waist or wrist accelerometry in adults. PLoS One. 2018;13(3):e0194461.

 47. WHO Expert Committee on physical status: the use and interpretation of 
anthropometry (1993 : Geneva S, Organization WH. Physical status: the 
use of and interpretation of anthropometry, report of a WHO expert com‑
mittee. World Health Organization; 1995. Available from: https:// apps. 
who. int/ iris/ handle/ 10665/ 37003. Cited 2023 Jun 23.

 48. Li Y, Wang H, Wang K, Wang W, Dong F, Qian Y, et al. Optimal body fat 
percentage cut‑off values for identifying cardiovascular risk factors in 
Mongolian and Han adults: a population‑based cross‑sectional study in 
Inner Mongolia, China. BMJ Open. 2017;7(4):e014675.

 49. Kennedy ET, Ohls J, Carlson S, Fleming K. The healthy eating index: design 
and applications. J Am Diet Assoc. 1995;95(10):1103–8.

 50. Krebs‑Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze 
JA, et al. Update of the healthy eating index: HEI‑2015. J Acad Nutr Diet. 
2018;118(9):1591–602.

 51. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J Roy Stat Soc Ser B (Meth‑
odol). 1995;57(1):289–300.

 52. Bland J, Altman D. Statistical methods for assessing agreement between 
two methods of clinical measurement. Lancet. 1986;327(8476):307–10.

 53. Bland JM, Altman DG. Measuring agreement in method comparison 
studies. Stat Methods Med Res. 1999;8(2):135–60.

 54. Bland JM, Altman DG. Agreement between methods of measure‑
ment with multiple observations per individual. J Biopharm Stat. 
2007;17(4):571–82.

 55. Krouwer JS. Why Bland‑Altman plots should use X, not (Y+X)/2 when X is 
a reference method. Stat Med. 2008;27(5):778–80.

 56. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak 
A, et al. The FAIR guiding principles for scientific data management and 
stewardship. Sci Data. 2016;3(1):160018.

 57. Barker M, Chue Hong NP, Katz DS, Lamprecht AL, Martinez‑Ortiz C, 
Psomopoulos F, et al. Introducing the FAIR principles for research soft‑
ware. Sci Data. 2022;9(1):622.

 58. Pfeiffer KA, Clevenger KA, Kaplan A, Van Camp CA, Strath SJ, Montoye 
AHK. Accessibility and use of novel methods for predicting physical 
activity and energy expenditure using accelerometry: a scoping review. 
Physiol Meas. 2022. Available from: http:// iopsc ience. iop. org/ artic le/ 10. 
1088/ 1361‑ 6579/ ac89ca. Cited 2022 Aug 22.

 59. Bai Y, Hibbing P, Mantis C, Welk GJ. Comparative evaluation of heart 
rate‑based monitors: apple watch vs Fitbit charge HR. J Sports Sci. 
2018;36(15):1734–41.

 60. Using the IntakeBalance package. Available from: https:// paulh ibbing. 
com/ Intak eBala nce. Cited 2023 Feb 9.

 61. Kim Y, Welk GJ. Criterion validity of competing accelerometry‑based activ‑
ity monitoring devices. Med Sci Sports Exerc. 2015;47(11):2456–63.

https://www.sciencedirect.com/science/article/pii/B9780128029282000011
https://www.sciencedirect.com/science/article/pii/B9780128029282000011
https://apps.who.int/iris/handle/10665/37003
https://apps.who.int/iris/handle/10665/37003
http://iopscience.iop.org/article/10.1088/1361-6579/ac89ca
http://iopscience.iop.org/article/10.1088/1361-6579/ac89ca
https://paulhibbing.com/IntakeBalance
https://paulhibbing.com/IntakeBalance


Page 13 of 13Hibbing et al. Int J Behav Nutr Phys Act          (2023) 20:115  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 62. Ahmadi MN, Chowdhury A, Pavey T, Trost SG. Laboratory‑based and 
free‑living algorithms for energy expenditure estimation in preschool 
children: a free‑living evaluation. PLoS One. 2020;15(5):e0233229.

 63. Butte NF, Watson KB, Ridley K, Zakeri IF, McMurray RG, Pfeiffer KA, et al. A 
youth compendium of physical activities: activity codes and metabolic 
intensities. Med Sci Sports Exerc. 2018;50(2):246–56.

 64. Henry CJK. Basal metabolic rate studies in humans: measurement and 
development of new equations. Public Health Nutr. 2005;8(7A):1133–52.

 65. Migueles JH, Cadenas‑Sanchez C, Ekelund U, Delisle Nyström C, Mora‑
Gonzalez J, Löf M, et al. Accelerometer data collection and processing cri‑
teria to assess physical activity and other outcomes: a systematic review 
and practical considerations. Sports Med. 2017. Available from: http:// link. 
sprin ger. com/ 10. 1007/ s40279‑ 017‑ 0716‑0. Cited 2017 Mar 19.

 66. Mackintosh KA, Montoye AHK, Pfeiffer KA, McNarry MA. Investigating 
optimal accelerometer placement for energy expenditure predic‑
tion in children using a machine learning approach. Physiol Meas. 
2016;37(10):1728–40.

 67. Hibbing PR, Ellingson LD, Dixon PM, Welk GJ. Adapted sojourn models to 
estimate activity intensity in youth: a suite of tools. Med Sci Sports Exerc. 
2018;50(4):846–54.

 68. Buchan DS, McSeveney F, McLellan G. A comparison of physical activity 
from Actigraph GT3X+ accelerometers worn on the dominant and non‑
dominant wrist. Clin Physiol Funct Imaging. 2019;39(1):51–6.

 69. Nuss KJ, Hulett NA, Erickson A, Burton E, Carr K, Mooney L, et al. Com‑
parison of energy expenditure and step count measured by ActiGraph 
accelerometers among dominant and nondominant wrist and hip sites. J 
Meas Phys Behav. 2020;3(4):315–22.

 70. Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Estimat‑
ing activity and sedentary behavior from an accelerometer on the hip or 
wrist. Med Sci Sports Exerc. 2013;45(5):964–75.

 71. Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA. Wrist‑inde‑
pendent energy expenditure prediction models from raw accelerometer 
data. Physiol Meas. 2016;37(10):1770–84.

 72. Hardyck C, Petrinovich LF. Left‑handedness. Psychol Bull. 
1977;84(3):385–404.

 73. Rothney MP, Martin FP, Xia Y, Beaumont M, Davis C, Ergun D, et al. Preci‑
sion of GE Lunar iDXA for the measurement of total and regional body 
composition in nonobese adults. J Clin Densitom. 2012;15(4):399–404.

 74. Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB, et al. 
Advanced body composition assessment: from body mass index to body 
composition profiling. J Investig Med. 2018;66(5):1–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://link.springer.com/10.1007/s40279-017-0716-0
http://link.springer.com/10.1007/s40279-017-0716-0

	Criterion validity of wrist accelerometry for assessing energy intake via the intake-balance technique.
	Recommended Citation

	Criterion validity of wrist accelerometry for assessing energy intake via the intake-balance technique
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Participants
	Protocol
	Criterion measure of EI
	Comparison measures of EI
	Accelerometry-based measures
	Other measures

	Accelerometer data processing and aggregation
	Statistical analysis

	Results
	Discussion
	Summary and key findings
	Importance of the study and method
	Sources of error and opportunities for refinement
	Caveats and implications for method selection
	Study strengths and limitations

	Conclusions
	Anchor 25
	Acknowledgements
	References


