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REVIEW

PCV15, a pneumococcal conjugate vaccine, for the prevention of invasive 
pneumococcal disease in infants and children
Timothy J Chapmana, Liset Olarteb, Ghassan Dbaibo c, Avril Melissa Houstona, Gretchen Tammsa, Robert Lupinaccia, 
Kristen Feemstera, Ulrike K Buchwalda and Natalie Banniettisa

aMerck & Co., Inc., Rahway, NJ, USA; bDivision of Pediatric Infectious Diseases, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO, 
USA; cDivision of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, 
Beirut, Lebanon

ABSTRACT
Introduction: Streptococcus pneumoniae is a causative agent of pneumonia and acute otitis media 
(AOM), as well as invasive diseases such as meningitis and bacteremia. PCV15 (V114) is a new 15-valent 
pneumococcal conjugate vaccine (PCV) approved for use in individuals ≥6 weeks of age for the 
prevention of pneumonia, AOM, and invasive pneumococcal disease.
Areas Covered: This review summarizes the V114 Phase 3 development program leading to approval in 
infants and children, including pivotal studies, interchangeability and catch-up vaccination studies, and 
studies in at-risk populations. An integrated safety summary is presented in addition to immunogenicity 
and concomitant use of V114 with other routine pediatric vaccines.
Expert Opinion: Across the development program, V114 demonstrated a safety profile that is compar
able to PCV13 in infants and children. Immunogenicity of V114 is comparable to PCV13 for all shared 
serotypes except serotype 3, where V114 demonstrated superior immunogenicity. Higher immune 
responses were demonstrated for V114 serotypes 22F and 33F. Results of the ongoing study to evaluate 
V114 efficacy against vaccine-type pneumococcal AOM and anticipated real-world evidence studies will 
support assessment of vaccine effectiveness and impact, with an additional question of whether higher 
serotype 3 immunogenicity translates to better protection against serotype 3 pneumococcal disease.
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1. Introduction

Disease caused by Streptococcus pneumoniae (pneumococcus) 
can be serious and sometimes life threatening. In the 20th cen
tury, the pneumococcus was recognized as the chief cause of 
lobar pneumonia. Pneumococcal pneumonia deaths are declin
ing due to vaccination; however, in 2019 pneumonia was still the 
leading cause of death in children under 5 years of age world
wide, with the pneumococcus remaining a major causative 
agent of pneumonia. Pneumococcus also remains a leading 
cause of bacterial meningitis, sinusitis, and acute otitis media 
(AOM), despite advances made in the prevention of pneumococ
cal disease through vaccines [1–6]. Children under one year of 
age are particularly vulnerable to invasive pneumococcal dis
eases (IPD) such as meningitis and bacteremia [7].

More than 100 pneumococcal serotypes have been 
described based on the specific composition of the polysac
charide capsule, the major virulence factor of the bacterium. 
However, not all serotypes have a similar potential to cause 
disease. A few serotypes are typically responsible for the 
majority of disease worldwide, and these can vary with age 
and geography [8,9]. The introduction of pneumococcal vac
cines and other factors have caused a shift in disease-causing 
serotypes with substantial regional variability. The quest to 
develop preventative pneumococcal vaccines dates back 

more than a century [10] with the first polysaccharide vaccine, 
containing the capsular polysaccharides of 14 serotypes, 
becoming available in 1977 followed by the 23-valent vaccine 
(PPSV23) in 1983. PPSV23 remains the pneumococcal vaccine 
most widely used globally in adults; however, it has poor 
immunogenicity in infants under 2 years of age. 
Pneumococcal conjugate vaccines (PCVs) have been devel
oped to address the need for protection against all pneumo
coccal disease (PD), particularly in infants and children.

To improve the immune response to the capsular polysac
charide in infants and children, following the model estab
lished for Haemophilus influenzae type b vaccine [11], vaccines 
in which capsular polysaccharides are conjugated to one of 
several carrier proteins were developed. PCV7 (Prevnar™) was 
the first approved and widely used PCV [12]. The conjugation 
of pneumococcal polysaccharides to a nontoxic carrier protein 
in PCVs provides an immunogen for induction of T cell- 
dependent immune responses to the polysaccharides and 
subsequent increased vaccine immunogenicity in infants. 
Shortly after the release of PCV7, several studies demonstrated 
the protective nature of vaccine-induced antibodies raised 
against the capsular polysaccharide [13,14]. Within a few 
years of the introduction of PCV7 in infant immunization 
programs, a > 90% reduction in vaccine type IPD was observed 
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[15,16]. However, pneumococcal serotypes causing disease 
have continued to evolve due to natural pressures and in 
response to vaccine use. Therefore, the ongoing development 
of new PCVs has been critical to broaden coverage against 
newly emerging, clinically relevant serotypes for expanded 
protection globally while maintaining suppression of sero
types included in prior PCVs. Currently, Synflorix® (PCV10, 
GlaxoSmithKline) [17], Prevnar 13® (PCV13, Pfizer) [18], and 
more recently Pneumosil® (PCV10, Serum Institute of India) 
[19], VAXNEUVANCE® (PCV15, Merck Sharp & Dohme LLC, 
a subsidiary of Merck & Co., Inc., Rahway, NJ, U.S.A. [MSD]) 
[20], and Prevnar 20® (PCV20, Pfizer) [21] are currently avail
able PCVs in various regions globally for use in infants and 
children.

Post-licensure studies from the post-PCV10 and PCV13 era 
have shown that PCVs not only significantly reduce the overall 
incidence of IPD by reducing IPD caused by serotypes contained 
in the vaccine [2,22–29] but also have a beneficial impact on 
reducing pneumococcal-related pneumonia [30–35] and AOM 
[5,23,36–40]. This is accompanied by a reduction in nasopharyn
geal colonization of most pneumococcal vaccine serotypes [41– 
45], which contributes to indirect community protection [46]. All 
these factors have resulted in significant reductions in pneumo
coccal-related hospitalizations and deaths in nations with suc
cessful PCV national infant immunization programs [32,34,47– 
49]. As a result of the overall efficacy and effectiveness of PCVs, 
the World Health Organization (WHO) recommends pneumococ
cal vaccines be included in childhood vaccination programs 
globally. As of 2020, 148 countries have instituted PCVs into 
their national immunization programs, either nationally or sub- 
nationally. Despite this, approximately half of infants globally 
have not received a complete PCV series [50]. Current infant 
PCV vaccination regimens most widely used include a 3-dose 
(two primary infant doses and a toddler dose or three infant 
doses) or 4-dose (3 primary infant doses and a toddler dose) 
series.

In recent years, several non-vaccine serotypes have become 
the predominant causes of pediatric PD with associated mor
bidity/mortality and antibiotic resistance in multiple regions 
globally, with serotypes 22F and 33F among the leading ser
otypes [24,25,51–55]. In addition, some serotypes included in 
currently approved PCVs are still major contributors to residual 

PD, of which serotypes 3, 19A, and 19F are most prominent. 
Serotype 3 is a unique case, in that several studies have 
concluded little to no effect of PCV13 on reducing IPD attrib
uted to this serotype [26,36,56–58]. In a recent analysis of IPD 
(2014–2019) in children under 5 years of age in 30 high- 
income countries with PCV national immunization programs 
(mixed data of PCV10 and PCV13), approximately one quarter 
of residual IPD was from serotypes 3 and 19A [59]. 
Furthermore, the prominence of these serotypes has persisted 
following the COVID-19 pandemic [60,61].

The primary objectives of the development program for 
PCV15 (also referred to as V114, the name of the clinical 
development program; contains serotypes 1, 3, 4, 5, 6A, 6B, 
7F, 9 V, 14, 18C, 19A, 19F, 23F, 22F, and 33F) were to 1) 
maintain protection against PD caused by serotypes found in 
PCV13, 2) induce robust immunogenicity to two key serotypes 
causing residual disease (22F and 33F), and 3) improve immu
nogenicity and subsequent protection against serotype 3. For 
serotype 3, it is well established that unique features of its 
capsular polysaccharide and a high rate of capsular shedding 
contribute to lower vaccine-induced immune responses to this 
serotype [62–64]. These data were considered during V114 
development in order to maximize the number of active tar
gets for induction of the serotype 3 immune response.

In the initial Phase 1 and 2 studies, V114 was found to be 
immunogenic in adults. However, immune responses to some 
serotypes in infants were suboptimal [65]. As a result, addi
tional formulations were tested to optimize the responses 
against all 15 serotypes [66]. Subsequently, comprehensive 
Phase 3 clinical development programs were designed for 
both pediatric and adult populations to evaluate the tolerabil
ity, safety, and immunogenicity in populations in need of PD 
prevention.

The adult Phase 3 program demonstrated that V114 is well 
tolerated with a safety profile similar to that of PCV13. V114 
induced robust immune responses to all 15 serotypes included 
in the vaccine after a single dose, which were non-inferior to 
the immune responses observed with PCV13 for the 13 shared 
serotypes and higher for serotypes 22F and 33F. This was true 
in healthy adults ≥18 years of age, as well as older adults ≥65  
years of age, and individuals living with HIV or with one or 
more known risk factors for PD [67–73]. Importantly, V114 was 
shown to induce superior immune responses to serotype 3 as 
compared to PCV13 which, pending real-world evidence, has 
the potential to address the significant burden of disease due 
to this serotype that remains in many populations worldwide 
[71]. These findings led to the licensure of V114 for use in 
adults in many regions globally.

Following proof of concept and formulation adjustments 
during Phase 2 studies [74], the V114 Phase 3 pediatric devel
opment program commenced shortly after the adult program 
and included a comprehensive set of randomized controlled 
trials evaluating 3 + 1 and 2 + 1 vaccination regimens in 
healthy infants, as well as catch-up vaccination and interchan
geability with PCV13. Additional studies have evaluated the 
safety and immunogenicity of V114 in infants and children 6  
weeks through 17 years of age with risk conditions of interest 
for whom pneumococcal vaccination is indicated (Table 1). 
A global approach was taken to clinical study site selection 

Article highlights

● PCV15 (V114) is a 15-valent pneumococcal conjugate vaccine 
approved in infants, children, and adults for the prevention of pneu
monia, AOM, and invasive pneumococcal disease

● This review summarizes the V114 pediatric phase 3 clinical program 
that included trials in healthy infants and children as well individuals 
with at-risk conditions, using 2 + 1 and 3 + 1 immunization schedules

● V114 was well tolerated in all studies, with a safety profile similar to 
the active comparator PCV13

● V114 demonstrated non-inferior immunogenicity to PCV13 for the 13 
shared serotypes, and superior immunogenicity for shared serotype 3 
and V114 serotypes 22F and 33F

● With a strong safety and immunogenicity profile in infants and 
children, V114 is expected to maintain protection offered by PCV13 
while further reducing pneumococcal disease against additional epi
demiologically important serotypes
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for the assessment of V114 in a diverse participant population. 
As a result, the Phase 3 program included over 350 study sites 
with participants from 6 continents and 28 countries globally. 
In all, over 10,000 infants and children have participated in the 
V114 development program to date. The data derived from 
this program resulted in the approval and licensing of V114 for 
use in infants and children in over 30 countries to date, 
including the United States, Canada, United Kingdom, 
European Union, Japan, and Australia [75–78] with other 
approvals currently in process. Herein, a detailed review of 
the V114 Phase 3 pediatric development program will com
prehensively summarize data regarding safety, immunogeni
city, concomitant vaccine use, and use within special 
populations.

2. Body

2.1. Overall study objectives and endpoints

The V114 clinical program was aligned with guidelines from 
the WHO for the development of new PCVs. This included the 
use of PCV13 as an active comparator since this was the 
highest valency PCV licensed in infants and children during 
the V114 Phase 3 program. Immunogenicity of V114 was 
bridged to a PCV with established efficacy/effectiveness 
(through determination of serotype-specific noninferiority of 
V114 to PCV13) as a means of predicting the effectiveness of 
V114 since placebo-controlled effectiveness studies are 
unethical in the post-PCV era. Study designs, populations, 
endpoints, and statistical criteria were additionally reviewed 
with multiple regulatory agencies (US FDA, EMA, and Health 
Canada) for alignment before the initiation of the comprehen
sive Phase 3 program.

The following endpoints were applied to vaccination with 
V114 as well as PCV13 for evaluation of V114 safety outcomes. 
Evaluation of participant safety and tolerability was a primary 
objective in all V114 clinical trials and included assessment of 
solicited injection-site and systemic adverse events (AEs), 
unsolicited AEs, serious AEs (SAEs), and deaths that occurred 
during the trial. In addition, daily temperature measurements 
were solicited for 7 days following each study vaccination, and 
days 8–14 if fever was suspected. AE intensity (measure of 
impact to function as mild, moderate, or severe which is 
distinct from serious AE assessment) and duration in days 
were recorded to characterize AEs within the trial. Electronic 
vaccination report cards (eVRC) were used with participants 
and their parents to record safety events for subsequent 

review by study investigators. SAEs and deaths were recorded 
from the beginning of the trial to at least 6 months following 
the last study vaccination. Relatedness to the study vaccines 
was assessed by the study investigators. In all studies dis
cussed below, baseline demographics were comparable 
between intervention groups.

Serotype-specific IgG concentration was used to test the 
primary immunogenicity hypotheses for all participants, in accor
dance with WHO [79]. Given the established association of IgG 
responses and functional antibody levels via opsonophagocytic 
activity (OPA) in children [80–83], the WHO recommends OPA 
data be generated for a subset of vaccinated children in some or 
all clinical studies [79]. As such, OPA was descriptively evaluated 
as a supportive endpoint. IgG was measured using the pneumo
coccal electrochemiluminescence v2.0 assay, which was bridged 
to a WHO international reference standard [84,85], and OPA was 
measured using a validated multiplex opsonophagocytic assay 
[86]. Immunogenicity endpoints were assessed following the 
primary infant PCV series (post-primary series, PPS, dose 2 in 
the 2 + 1 studies and dose 3 in the 3 + 1 studies) and following 
the toddler dose (post-toddler dose, PTD). Immunogenicity was 
evaluated for all 15 serotypes contained in V114 in participants 
who received V114 or PCV13, in order to compare immune 
responses for the 13 shared serotypes between vaccines and 
determine whether immune responses to serotypes 22F and 
33F were induced following V114. Immunogenicity endpoints 
included serotype-specific response rates (the proportion of par
ticipants meeting the WHO reference IgG concentration ≥0.35  
μg/mL for each serotype), IgG geometric mean concentrations 
(GMCs), and bactericidal activity as measured by OPA geometric 
mean titers (GMTs) and response rates.

2.2. Pivotal V114 studies

The three pivotal studies (V114–025, V114–026, V114–029) for 
the V114 program evaluated safety and immunogenicity using 
3 + 1 (V114–029 [87]) and 2 + 1 (V114–025 and −026, one 
using standard [2 and 4 months of age] and the other using 
alternative [3 and 5 months of age] timing for the primary 
infant series [88,89]) vaccination regimens. These studies 
were powered to test hypotheses for noninferiority of sero
type-specific immune responses comparing V114 to PCV13 
response rates and IgG GMC ratios (V114/PCV13) for the 
shared serotypes and superiority of serotypes 22F and 33F. 
The 3 + 1 study had additional immunogenicity hypotheses for 
noninferiority of serotypes 22F and 33F (immunogenicity was 

Table 1. PCV15 pediatric Phase 3 studies.

Study name Short description NCT # Pubmed ID

V114–023 (PNEU-SICKLE) PCV15 in children with sickle cell disease NCT03731182 36383730
V114–024 (PNEU-PLAN) Catch-up vaccination with PCV15 NCT03885934 36150974
V114–025 (PNEU-PED-EU1) PCV15 2 + 1 regimen pivotal trial NCT04031846 37105892
V114–026 (PNEU-PED-EU2) PCV15 2 + 1 regimen pivotal trial – Nordic NCT04016714 36841723
V114–027 (PNEU-DIRECTION) Interchangeabilty of PCV15 and PCV13 NCT03620162 36522265
V114–029 (PNEU-PED) PCV15 3 + 1 regimen pivotal trial NCT03893448 36621410
V114–030 (PNEU-WAY PED) PCV15 in children living with HIV NCT03921424 36939067
V114–031 (PNEU-LINK) Safety and tolerability of PCV15 NCT03692871 37309607
V114–032 (PNEU-ERA) Effectiveness of PCV15 on acute otitis media NCT04193215 Ongoing
V114–033 Subcutaneous 3 + 1 PCV15 regimen (Japan) NCT04384107 37344262
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compared to the lowest observed serotype response in the 
PCV13 group, excluding serotype 3) and superiority of sero
type 3 compared to PCV13. As per WHO recommendations 
and regulatory requirements, serotype-specific noninferiority 
for immunogenicity was evaluated at PTD in the 2 + 1 studies 
and at both PPS and PTD in the 3 + 1 study. In addition to the 
pivotal studies, a dedicated safety study was performed with 
over 2,400 infants randomized in a 5:1 ratio (V114: PCV13) 
such that approximately 2,000 received V114 in a 3 + 1 vacci
nation regimen (V114–031) for comprehensive safety 
assessment.

2.2.1. Safety
In the three pivotal studies (V114–025, V114–026, and V114– 
029) and the dedicated safety study (V114–031) totaling  
>6,000 participants, V114 was well tolerated with a safety 
profile consistent with PCV13. All safety outcomes, including 
proportions of participants with AEs, solicited AEs, vaccine- 
related AEs, distribution of maximum daily temperature mea
surements, SAEs, and AE intensity and duration, were gener
ally comparable between groups. In terms of individual 
solicited AEs, some studies reported higher proportions of 
participants in the V114 group with injection-site pain, irrit
ability (in V114–025 and V114–031 studies), injection-site 
erythema, and decreased appetite (in V114–031 study only) 
when compared to the PCV13 group. However, these differ
ences did not present as a pattern across all studies. In addi
tion, most of these AEs were categorized as mild or moderate 
in intensity and were of short duration (≤3 days), and therefore 
these differences are unlikely to be clinically meaningful. 
Across the four studies (V114–025, V114–026, V114–029, 
V114–031), vaccine-related SAEs occurred in four participants 
after V114 (all due to pyrexia) and three participants after 
PCV13 (two due pyrexia, one due to febrile convulsion). No 
vaccine-related deaths occurred and only one study disconti
nuation due to a vaccine-related AE occurred in each group 
(V114 and PCV13). Finally, no new or unexpected AEs were 
reported after the administration of V114. An integrated safety 
summary (ISS) of infants that includes data from V114–025, 
participants from V114–027 who received a complete vaccina
tion series of V114 or PCV13 (interchangeability study of V114 
and PCV13, described below), V114–029, and V114–031 
(V114–026 was not included since the study was not complete 
at the time of the analysis) is shown in Figure 1. Of note is that 
three of the vaccine-related SAEs discussed above (two after 
V114 and one after PCV13) occurred in the V114–026 study 
and therefore are not reported in Figure 1.

Daily maximum temperature measurements were solicited 
via the eVRC for 7 days following each study vaccination, and 
days 8–14 if fever was suspected, to monitor for elevated 
temperatures. Across the studies in the ISS, the majority of 
participants had a maximum temperature below 39.0°C, and 
a low proportion of participants (<0.5%) reported maximum 
temperatures at/above 40.0°C after any study vaccination. The 
distribution of maximum temperature measurements was 
comparable between vaccination groups across all studies.

Pyrexia was an unsolicited AE in the program. In the ISS 
(V114–025, V114–027, V114–029, and V114–031), the rates of 
the AE of pyrexia were comparable between groups (37.7% 

[1354/3589] in V114 group, 36.5% [752/2058] in PCV13 group), 
as well as cases of pyrexia that classified as SAEs (0.3% [11/ 
3589] in V114 group and 0.2% [5/2058] in PCV13 group). Of 
these, three were considered vaccine-related SAEs, two in the 
V114 group, and one in the PCV13 group. Per regulatory 
definitions, these cases were classified as SAEs due to hospi
talization of the participant. None of these cases reported 
a temperature higher than 40.0°C and all were confounded 
with the concomitant administration of routine pediatric vac
cinations. None of the reported vaccine-related SAEs of pyr
exia in the V114 group resulted in febrile convulsion. 
Moreover, the rate of convulsions and febrile convulsions 
were comparable between arms (0.2% in V114 group and 
0.2% in PCV13 group).

Taken together, these data demonstrate that V114 is well 
tolerated in infants and toddlers, with a comparable safety 
profile to PCV13.

2.2.2. Immunogenicity
In the 2 + 1 studies, V114 met noninferiority criteria for each 
of the 13 shared serotypes and superiority criteria for sero
types 22F and 33F, based on IgG response rates and IgG GMC 
ratios at 30 days PTD as compared to PCV13. In the 3 + 1 
study, noninferiority (for all 15 serotypes) and superiority 
(for serotypes 3, 22F, and 33F) assessments were made at 
PPS and PTD. V114 met noninferiority criteria for all 15 ser
otypes at PTD based on IgG GMC, and for all 15 serotypes 
based on IgG response rates and IgG GMC at PPS, except 
serotype 6A IgG GMC which narrowly missed the margin by 
0.02 (the lower bound of the confidence interval for V114/ 
PCV13 GMC ratio for serotype 6A was 0.48 with 
a noninferiority cutoff of 0.50). Superiority criteria were met 
at PPS (for response rates and IgG GMC ratios) and PTD (IgG 
GMC ratios) for the unique serotypes 22F and 33F, and the 
shared serotype 3 [87]. In all three pivotal studies, V114 
induced robust functional antibodies as measured by OPA 
to each of the 15 serotypes, at levels which were generally 
comparable to PCV13 for the 13 shared serotypes and higher 
for serotypes 22F and 33F, at PPS and PTD. Serotype-specific 
antibody levels from PPS to prior to the toddler dose waned 
and then showed boosting PTD, suggesting development of 
vaccine-induced immune memory. This was true for both 2 +  
1 and 3 + 1 vaccination regimens. From these data, it is 
expected that V114 will be protective for the 15 serotypes 
included in the vaccine. Importantly, V114 broadens PCV 
coverage without significant loss of immunogenicity and 
has improved immunogenicity against serotype 3. Favorable 
safety and immunogenicity results at PPS from the 3 + 1 
study are also informative for PCV recommendations in 
regions where a 3 + 0 vaccination regimen is used.

2.3. V114 catch-up vaccination and interchangeability

Interchangeability of V114 with PCV13 [90] and catch-up vac
cination with V114 [91] were evaluated in two studies. The 
WHO recommends catch-up vaccination as soon as possible 
for infants and children who are delayed for any reason in 
completing the pediatric PCV series [92]. Catch-up vaccination 
was evaluated in 606 participants composed of three age 
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cohorts: 7–11 months (pneumococcal vaccine naïve, received 
a 3-dose PCV regimen), 12–23 months (PCV naïve, received 
a 2-dose V114 regimen), and 2–17 years of age (PCV experi
enced or naïve, received a single V114 dose). Overall, the 
proportion, duration, and intensity of AEs were similar 
between groups and no vaccine-related SAEs and/or deaths 
were reported, demonstrating that V114 was well tolerated. At 
30 days after the last PCV dose in all age cohorts, V114 gen
erated robust immune responses to each of the 15 serotypes 
as assessed by IgG GMCs and response rates, which were 
comparable to PCV13 for the shared serotypes and higher 
for serotypes 22F and 33F.

Switching from PCV13 to V114 mid-schedule was evaluated at 
each of the four doses in the 3 + 1 vaccination regimen in 900 
healthy infants. The safety profile of mixed dosing schedules or 
a complete V114 dosing schedule, including the proportions of 
participants with AEs, was comparable to participants who 
received a full 4-dose series of PCV13. No V114-related SAEs 
occurred during the study, and no deaths were reported. One 
vaccine-related SAE was reported in the PCV13 group. 
Immunogenicity data, including serotype-specific response rates 
and IgG GMCs, were generally comparable for all groups of shared 
serotypes. Interestingly, the interchangeability study design 
allowed for the evaluation of immune responses to serotypes 
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Figure 1. Safety profile of V114 in healthy infants after any study vaccine dose across 4 studies (V114–025, −027, −029, and − 031). For V114–027, groups 1 
(complete PCV13 regimen) and 5 (complete V114 regimen) were used for this analysis. Top: the number (n) and proportion (%) of participants included in each 
safety category. Bottom: solicited AE summary, with proportions of participants experiencing an AE and intensity in the stacked bar in the V114 (P15) and PCV13 
(P13) groups. The 2 deaths that occurred in recipients of V114 were due to complications from congenital heart disease and a craniocerebral injury following 
a motor vehicle accident.
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22F and 33F after increasing doses of V114. As shown by response 
rates, IgG GMCs, and reverse cumulative distribution curves, higher 
antibodies to both serotypes were observed when at least a single 
dose of V114 was administered during the infant series and at the 
toddler age. A single dose of V114 during either the infant primary 
series or the toddler booster dose was sufficient to induce near- 
maximal IgG levels against serotype 22F, while serotype 33F immu
nogenicity increased incrementally with the number of V114 doses 
received. As has been shown in studies of prior PCVs, individual 
vaccine serotypes can differ in their immunogenicity profile and 
the number of doses needed for peak response [93,94].

2.4. V114 concomitant use with other routine pediatric 
vaccines

In prior PCV development programs, PCVs have been shown to 
have minimal impact on the immunogenicity of concomitantly 
administered routine pediatric vaccines [95–98]. While concomi
tant routine pediatric vaccine administration was allowed 
throughout the V114 Phase 3 program, four studies had pre- 
specified noninferiority hypotheses regarding immunogenicity 
of concomitantly administered study vaccines with V114 [87–90]. 
Concomitant study vaccines tested included pentavalent and 
hexavalent combination vaccines, rotavirus vaccine, hepatitis 
A and B vaccines, MMR vaccine, varicella vaccine, and Hib vac
cine. Immune responses at PPS and PTD to all vaccine antigens 
tested in the Phase 3 program had noninferior immunogenicity 
when co-administered with V114 compared to co-administration 
with PCV13 (summary in Table 2). These data demonstrate that 
V114 can be given as part of the pediatric vaccination schedule 
without interference with the tolerability and immunogenicity of 
other routine pediatric vaccines.

2.5. V114 in at-risk populations

Infants and children with sickle cell disease (SCD) are at 
increased risk of IPD [99–102], and IPD due to serotypes 22F 

and 33F contribute to residual IPD in individuals with SCD 
[103]. Although relatively understudied compared to healthy 
children, pneumococcal vaccines have been shown to be 
immunogenic in children with SCD [104–107]. For V114, the 
safety and immunogenicity of a single vaccination was eval
uated in 104 children 5–17 years of age with SCD [108]. V114 
was well tolerated, with a safety profile generally comparable 
to PCV13. No vaccine-related SAEs were reported, and no 
deaths occurred during the study. A single dose of V114 
induced serotype-specific immune responses (compared to 
baseline prior to vaccination) to all 15 serotypes; IgG GMCs 
and OPA GMTs against the 13 shared serotypes were compar
able to PCV13 and higher for serotypes 22F and 33F. Although 
PCV was not followed up with PPSV23 in this study as is 
recommended for children with SCD, other studies have sup
ported the use of V114 followed by PPSV23 in at-risk popula
tions [68,109].

Children living with HIV are highly vulnerable to IPD com
pared to healthy children, even on anti-retroviral therapy with 
undetectable viremia [110–112]. Similar to children with SCD, 
a sequential vaccination strategy is often recommended for 
children with HIV, in which vaccination with PCV is followed 
by vaccination with PPSV23 for broader pneumococcal sero
type coverage. The safety and immunogenicity of V114 or 
PCV13 followed 8 weeks later by PPSV23 was evaluated in 
407 children with HIV receiving mono or combination anti- 
retroviral therapies [109]. Administration of V114 followed by 
PPSV23 was well tolerated in the study. There was 
a numerically higher proportion of participants who reported 
vaccine-related AEs in the V114 group (78.3%) compared to 
the PCV13 group (67.2%). However, the majority of AEs in both 
groups were of mild-to-moderate intensity and of short dura
tion. The proportions of participants with SAEs were compar
able between groups, and no V114-related SAEs or deaths 
were reported. Immunogenicity to all 13 shared serotypes 
was induced following V114, and these levels were maintained 
or increased after PPSV23. Serotypes 22F and 33F were higher 

Table 2. Summary of concomitant vaccine immunogenicity assessments from PCV15 studies using 3 + 1 and 2 + 1 vaccination regimens.

2 + 1 schedule 2 + 1 alternative schedule 3 + 1 schedule

Antigen Criteria Percent difference PCV15-PCV13 (95% CI) Noninferiority margin - %

Diphtheria toxoid % ≥0.1 IU/ml −0.6 (−1.7, 0.4) 0.2 (−0.6, 1.0) −0.7 (−2.6, 1.1) −10
Tetanus toxoid % ≥0.1 IU/ml −0.4 (−1.3, 0.3) 0.2 (−0.6, 1.0) 0.2 (−0.4, 0.8) −5
Pertussis-PT % ≥5 EU/ml −0.2 (−1.3, 0.9) 0.2 (−0.6, 1.0) 0.5 (−0.7, 1.9) −10
Pertussis-FHA % ≥5 EU/ml −0.2 (−1.0, 0.5) 0.2 (−0.6, 1.0) −0.3 (−1.3, 0.8) −10
Pertussis-FIM 2/3 % ≥20 EU/ml 0.2 (−0.8, 1.2) 2.0 (−3.1, 7.1) −10
Pertussis-PRN % ≥5 EU/ml −0.4 (−1.3, 0.3) 0.2 (−0.8, 1.2) 1.8 (−3.2, 6.8) −10
Poliovirus 1 % with NAb ≥ 1:8 dilution 0.0 (−0.7, 0.7) 0.0 (−0.9, 0.9) 0.0 (−0.7, 0.8) −5
Poliovirus 2 % with NAb ≥ 1:8 dilution 0.0 (−0.7, 0.7) 0.2 (−0.6, 1.1) 0.0 (−0.6, 0.6) −5
Poliovirus 3 % with NAb ≥ 1:8 dilution 0.2 (−0.5, 1.1) 0.0 (−0.8, 0.7) 0.0 (−0.6, 0.6) −5
Hib-PRP % ≥0.15 ug/ml 0.4 (−1.3, 2.1) −1.1 (−3.3, 0.9) −1.4 (−4.3, 1.5) −10
HBsAg % ≥10 mIU/ml −0.8 (−2.0, 0.0) −0.6 (−2.0, 0.5) −0.2 (−3.7, 2.0) −10
Hepatitis A % ≥10 mIU/ml 0.3 (−1.6, 2.2) −10
Measles % ≥225 mIU/ml −0.2 (−1.8, 1.3) −5
Mumps % ≥10 mumps Ab units/ml −1.7 (−3.8, 0.2) −5
Rubella % ≥10 IU/ml −0.9 (−2.3, 0.5) −5
Varicella zoster % ≥5 gpELISA units/ml −1.3 (−3.2, 0.5) −10

Ratio PCV15/PCV13 (95% CI)
Rotavirus IgA GMT 0.97 (0.70, 1.34) >0.5

CI=confidence interval; IU=international unit; EU=endotoxin unit; PT=pertussis toxin; FHA=filamentous hemagglutinin; FIM 2/3=fimbriae types 2 and 3; 
PRN=pertactin; Nab=neutralizing antibodies; Hib=Haemophilus influenzae type b; PRP=polyribosylribitol phosphate; HBsAg=hepatitis B surface antigen; 
Ab=antibody; gpELISA=glycoprotein enzyme-linked immunosorbent assay; IgA=immunoglobulin A; GMT=geometric mean titer. 
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after V114 and maintained or increased after PPSV23, suggest
ing earlier protective immunogenicity in this population. 
Overall, these data support the use of V114 in HIV-infected 
children.

Preterm infants (less than 37 weeks gestation) have up to 
three times the risk of IPD compared to full-term infants [113]. 
As an objective in the Phase 3 program, a proportion of 
healthy infants enrolled in 4 V114 studies were preterm 
infants, and a subsequent pooled secondary analysis was per
formed on these data to evaluate safety and tolerability of 
V114 in this population. A total of 354 preterm infants were 
vaccinated using a 3 + 1 regimen with either V114 or PCV13. 
Proportions of participants with AEs, vaccine-related AEs, and 
SAEs were comparable between groups. Pyrexia occurred in 
37.4% of V114 recipients and 47.2% of PCV13 recipients, and 
only three participants recorded a maximum temperature of  
>40.0°C after any dose (2 in the V114 group, 1 in the PCV13 
group). No V114-related SAEs occurred in preterm infants, and 
no deaths occurred. As assessed by serotype-specific IgG 
GMCs and OPA GMTs, V114 induced comparable immune 
responses to the 13 shared serotypes and higher responses 
to serotypes 22F and 33F in preterm infants. These data 
demonstrate the safety, tolerability, and immunogenicity of 
V114 in preterm infants.

3. Expert opinion

V114 is a valuable modern PCV in the fight to prevent IPD 
globally. The safety and immunogenicity profiles in infants and 
children are favorable and will provide broader pneumococcal 
serotype coverage without increased reactogenicity. V114 is 
interchangeable with PCV13, can be safely administered with 
other routine pediatric vaccines, and is well tolerated and immu
nogenic in several at-risk populations, thereby facilitating 
a seamless integration into existing pediatric immunization pro
grams. The focus of the Phase 3 program on at-risk populations 
and the geographic diversity in site selection is a specific 
strength in the development of V114 and provides confidence 
in the use of V114 in individuals with a variety of preexisting 
conditions and backgrounds. The expected added coverage 
from inclusion of serotypes 22F and 33F will be highly beneficial 
in most regions globally where these are prominent non-vaccine 
serotypes causing IPD.

An important consideration for the development of new PCVs is 
providing broader serotype coverage while also providing robust 
immunogenicity to all serotypes contained in the vaccine. Some 
serotypes contained in current PCVs, including 3, 19A, and 19F, 
remain major causes of disease even in individuals fully vaccinated 
with a PCV that includes these serotypes. Serotype 3 currently 
leads in vaccine-type residual disease globally. Therefore, there is 
caution warranted in projections of new PCV effectiveness based 
simply on the serotypes contained in the vaccine. The V114 devel
opment program aimed at improving immunogenicity to serotype 
3 which was successful and resulted in higher vaccine-induced 
immune responses compared to PCV13 across pediatric and adult 
populations. This outcome demonstrates that optimization of 
PCVs for increased immunogenicity against problematic serotypes 
is possible and adds anticipation to future real-world evidence 
studies of V114 effectiveness against disease caused by serotype 

3. It remains unknown whether a focused approach such as the 
one used with V114 for serotype 3 could be employed to improve 
immunogenicity and subsequent vaccine effectiveness against 
other recalcitrant serotypes such as 19A and 19F. This should 
remain an important consideration in the development of new 
PCVs while also engineering for broader coverage. While alterna
tive approaches to pneumococcal vaccine design are currently in 
development using novel carrier proteins, novel adjuvants, and 
protein-based or whole-cell platforms, it is unknown whether any 
of these can improve on the current most widely used approach 
while also maintaining a favorable safety and tolerability profile.

With the licensure of V114 and more recently PCV20, the 
global use of PCVs will change and therefore with it the epide
miology of pneumococcal diseases. It is possible that these 
changes will result in a significant impact on antimicrobial resis
tance among pneumococci globally as more serotypes are tar
geted with newer vaccines. There is an associated opportunity 
within national immunization programs as the options for the 
prevention of pneumococcal disease are expanded. While all 
currently licensed pneumococcal vaccines are projected to be 
cost effective, cost variation between pneumococcal vaccines 
can affect decision-making at the national level. Cost-effective, 
broad protection is now available in newer PCVs, while estab
lished vaccines such as PPSV23, for children 2 years and older, 
and PCV10 still offer benefits at a lower price point. Global access 
to effective pneumococcal vaccines should be a continued prior
ity as the complexity and associated development cost of current 
generation vaccines change.

In conclusion, it is an exciting time for pneumococcal vac
cines and the hope of more complete protection against PD to 
prevent morbidity and mortality from pneumococcal infec
tions. With a favorable safety and tolerability profile and 
robust immunogenicity results coupled with broad pneumo
coccal serotype coverage, V114 is well positioned to advance 
prevention of pneumococcal disease globally.
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