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Differential gene expression 
analysis of spatial transcriptomic 
experiments using spatial mixed 
models
Oscar E. Ospina 1, Alex C. Soupir 1, Roberto Manjarres‑Betancur 2, 
Guillermo Gonzalez‑Calderon 2, Xiaoqing Yu 1 & Brooke L. Fridley 1,3*

Spatial transcriptomics (ST) assays represent a revolution in how the architecture of tissues is studied 
by allowing for the exploration of cells in their spatial context. A common element in the analysis is 
delineating tissue domains or “niches” followed by detecting differentially expressed genes to infer 
the biological identity of the tissue domains or cell types. However, many studies approach differential 
expression analysis by using statistical approaches often applied in the analysis of non‑spatial scRNA 
data (e.g., two‑sample t‑tests, Wilcoxon’s rank sum test), hence neglecting the spatial dependency 
observed in ST data. In this study, we show that applying linear mixed models with spatial correlation 
structures using spatial random effects effectively accounts for the spatial autocorrelation and reduces 
inflation of type‑I error rate observed in non‑spatial based differential expression testing. We also 
show that spatial linear models with an exponential correlation structure provide a better fit to the ST 
data as compared to non‑spatial models, particularly for spatially resolved technologies that quantify 
expression at finer scales (i.e., single‑cell resolution).

The ability to measure gene expression within a spatial context, which is referred to as spatial transcriptomics 
(ST), includes a wide range of technologies, including assays based on the well-established in-situ fluorescent 
hybridization (FISH)1–3, and groundbreaking in-situ spatial  barcoding3–8. Current ST techniques have the capac-
ity for extensive multiplexing (i.e., hundreds to thousands of genes assayed in the same tissue) and generating an 
additional data modality representing the spatial position of the measured gene expression. The spatial informa-
tion from ST experiments has allowed researchers to address questions about the tissue architecture of organs and 
 diseases3,9–11. Of particular importance has been the use of ST to assess tissue heterogeneity in many cancerous 
 tissues6,12–21, as well as infected  tissues22. Spatial transcriptomics has also enabled a better understanding of cell-
to-cell  communication23–25 and identifying potential druggable  targets18,26,27.

One common step in ST analysis is the identification of genes that differentiate tissue domains within a sample 
(i.e., differentially expressed genes among tissue niches)28–30. Although detecting spatially variable genes without 
a priori definition of tissue domains (i.e., clusters) is increasingly becoming a popular choice, many studies com-
plete the identification of differentially expressed genes in ST data within domains in an analogous fashion as it 
is carried out among scRNA-seq cell clusters or cell populations. In those studies, once tissue niches have been 
identified in the ST samples via Louvain clustering, for example, researchers often proceed with non-parametric 
tests such as Wilcoxon’s rank sum  test31–33 to identify differentially expressed (DE) genes among the niches. 
Although this approach may be appropriate for cases where transcriptomic differences between the compared 
domains are substantial (e.g., tumor vs. stroma), it does not account for the spatial dependency, which results 
in gene expression of neighboring sampling units (e.g., cell or spots) to be more similar than distant sampling 
 units34. Because the spatial dependency in ST data is a driving factor of the gene expression patterns observed in 
 tissues35,36, more sophisticated statistical methods could be used to account for the spatial dependency between 
sampling  units37–39. Common approaches in many novel methods include identifying genes with spatial pat-
terns, such as gene expression “hot spots”, or testing for genes showing high expression on each tissue domain 
(i.e., cluster) detected in a  sample35,38–44. Benchmarking to compare the performance of these approaches has 
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also been  done45, which is crucial to aid in method selection. However, despite the wide availability of methods 
to detect spatially variable genes, less effort has been directed to quantify the impact of disregarding spatial 
dependency in ST data analysis.

Quantifying the impact of non-spatial approaches for detecting differentially expressed genes is an important 
endeavor, given that failure to account for the spatial autocorrelation in ST experiments may result in inflation 
of the type I error  rate40,46–48. An increased type I error rate leads to more genes erroneously being identified as 
differentially expressed due to inaccuracy in the p-values (i.e., p-values too small). The impact of inflated type 
I error rates is increased due to unreliable estimation of gene expression variation, as the variation estimates 
do not consider the spatial correlation among the neighboring and distant sampling units. Even in non-spatial 
scRNA-seq, traditional differential expression methods fail to account for type I error  inflation46, which led us 
to believe that considering the spatial correlation in ST experiments can alleviate this phenomenon.

Using linear mixed models offers a simple alternative for DE analysis in ST data. In bulk RNA-seq analysis, 
robust and well-established pipelines apply linear model fitting to test for differences in expression between two 
or more  categories49,50. However, their application to ST requires additional considerations, given the spatial 
nature of this modality. One such consideration, which takes advantage of the flexibility of linear mixed models, 
is the incorporation of spatial covariance structures and variogram  analysis51,52. To implement this approach 
as an alternative for the analysis of ST data, we performed differential gene expression analysis among groups 
of regions of interest (ROIs), spots, or cells in multiple ST experiments using a spatially aware implementation. 
The implementation tested for genes with significantly higher (or lower) expression in one group of ROIs, spots, 
or cells (e.g., cluster, tissue niche) to other clusters or tissue niches by fitting linear mixed models that explicitly 
account for the random spatial effects via spatial covariance structures. This implementation was tested on pub-
licly available ST data sets generated with 10X Genomics’ Visium platform and Nanostring’s GeoMx and Spatial 
Molecular Imager (CosMx-SMI) platforms. We fitted corresponding non-spatial and spatial models to assess the 
impact of accounting for the spatial autocorrelation on the downstream DE analysis results.

Results
Comparison of non‑spatial and spatial models
Models with or without spatial covariance structures were fitted for each gene to determine the most suitable 
alternative for capturing the expression differences among tissue domains. The tissue domain or cell type annota-
tions for each ROI, spot, or cell were obtained from the studies that generated the data sets (Table 1; Supplemen-
tary Table S1). These studies generated the annotations using histopathology methods (Visium and GeoMx data 
sets) and cell phenotyping (CosMx data sets). Assessment of the models using the Akaike Information Criterion 
(AIC), an estimate of model fit, showed that spatial models with an exponential covariance structure provided 
a more accurate fit to Visium and SMI data than non-spatial models (Fig. 1). Among the four Visium samples, 
between 28 and 41% of the tests (i.e., gene expression in domain A vs gene expression in other domains) showed 
a better fit to the data when using a spatial model (i.e., lower AIC) compared to a non-spatial model. For the SMI 
datasets, the percentage of tests favoring the spatial models varied from 32 to 67%. In contrast, for the analysis of 
the GeoMx data sets, no more than 16% of the spatial models were favored over the non-spatial models (Fig. 1). 

Table 1.  Summary of spatial transcriptomics samples used in the differential expression tests. The biological 
annotations present in each sample are also shown. The maximum number of tests performed corresponds 
to the combination of genes times the number of annotations. The completed tests column indicates the 
number of tests that reached convergence during the REML optimization in spaMM (using the exponential 
covariance structure). a Not present in sample hu_liver_00. b Not present in sample UKF275. c Not present in 
sample NormalLiver (FOV 174). d Not present in sample CancerousLiver (FOV 366). e Not present in sample 
Lung5Rep3 (FOV 28). f Not present in sample Lung6 (FOV 20).

Technology Sample Annotations Number of tested genes Maximum tests Completed tests

GeoMx

hu_brain_001
Layer I, Layer II–III, Layer IV, Layer V, White matter 5000

25,000 25,000

hu_brain_004a 25,000 25,000

hu_liver_001 Zone 1, Zone 2, Zone 3, Bile duct, Artery, Portal vein, Central vein, 
Liver macrophages,  Fibroblastsa 5000

40,000 40,000

hu_liver_002 45,000 45,000

Visium

151507 Layer I, Layer II, Layer III, Layer IV, Layer V, Layer VI, White 
matter

5000

35, 000 34,968

151673 35, 000 35,000

UKF243 Cellular, Infiltrative,  Necrosisb, Necrotic  edgeb, Vascular hyper, 
None

30,000 30,000

UKF275 20,000 20,000

SMI

CancerousLiver (FOV 366) Hepc, Hep  3d, Hep  4d, Hep  5d, Hep  6d, Antibody secreting B 
cells, CD3 Alpha Beta T cells, Stellate cells, Periportal LSECs, 
 Cholangiocytesd, Inflammatory macrophages, Gamma Delta T 
cells  1d, Non inflammatory macrophages, Mature B cells, Tumor  1c, 
Central venous  LSECsc

1000

10,000 10,000

NormalLiver (FOV 174) 13,000 13,000

Lung5Rep3 (FOV 28) pDC,  Plasmablaste, Neutrophil, Fibroblast, B  celle, T CD4  naivee, 
Epithelial, Macrophage,  Maste, T CD8 naive, Endothelial, Tumor 
12, mDC, T CD4 memory, Monocyte, NK, Tumor  5e, Tumor  6f, T 
CD8  memoryf,  Tregf

960
16,320 16,320

Lung6 (FOV 20) 14,400 14,400
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When considering only genes with high expression in the samples (above the median expression), the proportion 
of favored spatial models increased to 48–66% in Visium studies and 51–93% in SMI studies (Fig. 1).

Control of type I error by spatial models
The differential expression p-values tended to be smaller in the non-spatial models than the spatial models, pos-
sibly due to an increase in the type I error inflation. However, these patterns were dissimilar among the ST tech-
nologies (Fig. 2). In the Visium experiments, 65–71% of the p-values were larger in the spatial models compared 
to the non-spatial models. In SMI, 60–66% of the p-values from the spatial models were larger than those from 
the non-spatial models. In the GeoMx experiments, the p-values from the spatial models were larger in 40–54% 
of the tests compared to the non-spatial models. These modeling results suggest a potential slight inflation in 
the type I error rate for the non-spatial models, whereby p-values generated by non-spatial models are too small 
likely due to inaccurate estimation of the variance in test statistic. In other words, the variance estimation for the 
non-spatial models is too small, resulting in a larger test statistic and artificially smaller p-value.

In the tests, we grouped all the spots or cells that did not belong to the tissue niche or cell type in which 
differentially expressed genes were being detected. Hence, we also tested for pairwise differentially expressed 
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Figure 1.  The results of model comparison between non-spatial models and spatial models with exponential 
covariance structure using AIC. For each gene x cluster test, the models with the lowest AIC were deemed to be 
a better fit to the data (solid color: spatial model with lower AIC, translucid color: non-spatial model with lower 
AIC). The tests were separated according to the average gene expression across all ROIs/spots/cells in the tissue 
sample (high vs low expression based on the median gene expression as threshold).
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Figure 2.  Comparison between non-spatial and spatial (exponential model) differential expression tests. Each 
point corresponds to the − log10 (p-value) resulting from a (non-spatial or spatial) linear model fit between 
the expression of a gene and a binary variable indicating whether an ROI/spot/cell belongs to a biological 
annotation. The p-values indicate if the gene is differentially expressed (model coefficient different to zero) 
for a specific biological annotation compared to the rest of the ROIs/spots/cells. The solid line indicates a 1:1 
correspondence (i.e., non-spatial and spatial models yield the same p-values). The colored dashed lines indicate 
the linear trend of the p-values for each sample. If a colored line lies below the solid line, p-values from the non-
spatial model tend to be larger than those from the spatial model.
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genes among three cell types in the two SMI data sets. Similar to the other tests pooling cell types, 44–64% of 
the p-values from the spatial models were larger than the non-spatial model p-values (Supplementary Fig. S1).

Discussion
Researchers often aim to detect differences in gene expression between cells or tissue niches, with many meth-
ods available for non-spatially informed assays, such as single-cell or “bulk”  RNAseq49,50,53,54. Although spatial 
statistics methods have existed in the literature for several  decades51, only recently have spatial statistics been 
applied to detect spatially variable genes in biological tissues assayed with  ST35,38–44. In this study, we have shown 
that detecting differentially expressed genes in ST data benefits from statistical models that consider spatial 
autocorrelation. This leads to a more accurate estimate of the variance and thus produces more stable estimates 
of p-values. In other words, the spatial models account for the non-independence in the cells/spots, which is 
not addressed by traditional non-spatial linear models (i.e., two sample t-tests assuming independence between 
observations). Failure to consider this dependency between observations may cause the tests to underestimate the 
variance of the test statistic resulting in overly small p-values. Our results highlight the importance of consider-
ing the spatial dependency present in spatial-resolved transcriptomics data, which is often neglected in many 
studies conducting differential expression analyses. Notably, an excess of small p-values has also been noted in 
non-spatial scRNA-seq differential expression  analysis46.

Our results comparing the models with and without a spatial correlation structure indicated that for densely 
sampled ST data (e.g., Visium, SMI), spatial models present a better model fit. For non-densely sampled experi-
ments (e.g., GeoMx using ROIs), there was a slight tendency for non-spatial models to fit the data better when 
compared to spatial models, probably due to less spatial correlation among ROIs that are often sampled distant 
from one another. Considering this finding, using non-spatial models, such as two-sample t-tests, may be appro-
priate to study differential gene expression in studies using GeoMx where the ROIs are more spatially distant. 
Nonetheless, the correlation among ROIs within a single slide and the technical variation among slides in the 
same study could be considered when testing for differentially expressed  genes55. Our results also indicate that 
for Visium and SMI, the spatial models performed better than non-spatial models in cases where the differential 
expression test involved a highly expressed gene. Nonetheless, the utility of spatial models in moderating the 
excess of small p-values might depend on the relative sample size of the groups being compared. If one of the 
groups is represented by a few cells, the non-spatial and spatial models produce similar p-values (Supplementary 
Fig. S1). In addition, genes with low expression are likely to show excessive zeroes (a characteristic of ST  data56,57), 
and hence, fitting spatial mixed models may become challenging. Novel application of Bayesian methods to detect 
spatially variable genes appears robust to excessive zeroes in ST  data57,58.

Our results were indicative that p-values obtained from the spatial model constituted a more biologically 
informative ranking metric for gene set enrichment analysis (GSEA). Using Benjamini-Hochberg (FDR) adjusted 
p-values from the non-spatial and spatial models as ranking metrics, we performed GSEA for the Hallmark gene 
sets with the R package  fgsea59,60. The GSEA was conducted individually for each histopathology-defined domain 
in the glioblastoma Visium data  set61. We observed that across all the significantly enriched Hallmark gene sets, 
the results were more significant using the p-values from the spatial models as compared to the non-spatial 
models, with the exceptions of oxidative phosphorylation in the necrosis niche and KRAS signaling downregu-
lation in the necrotic edge niche (Fig. 3). A lower score of the KRAS signaling is expected in the necrotic edge, 
assuming that the tumor cells in this niche are not actively  proliferating62. Although the GSEA was conducted on 
a single Visium sample (UKF243), and comprehensive testing is required to evaluate the information p-values 
can provide for pre-ranked GSEA, our analysis suggests that p-values derived from spatial models can be more 
appropriate for gene set enrichment analysis when using ST data.

Testing for differential gene expression is time-consuming for modern single-cell or spatial applications, as 
hundreds to thousands of individual tests are performed (i.e., each combination of gene expression in domain A 
vs gene expression in other domains). In addition, each test often includes hundreds to thousands of cells or spots. 
When applying spatial models for differential expression, the advantages of accurate estimation come at the cost 
of longer computation times than the non-spatial models (Fig. 4). Previously, we performed these models using 
the long-supported R package nlme. However, the estimation of parameters was exceedingly time-consuming 
(data not shown). Hence, we switched to using the R package spaMM to fit the statistical models. Using a High-
Performance Computing environment (HPC), differential expression of a single gene between two tissue domains 
can take anywhere from a few seconds to more than 2 h in Visium- or SMI-generated data. Each test was run 
using a single core and 8 GB of memory, resources not typically available in conventional laptop computers if 
run across thousands of tests simultaneously. After considering these results, we opted to implement differential 
gene expression analysis using spaMM (as opposed to nlme) in our R package for spatial transcriptomics analysis 
spatialGE63, and we have named this approach STdiff. In the spatialGE R package, we made efforts to parallelize 
the analyses, but such efforts alone are not enough to achieve feasible computing times on personal computers 
and require the use of an HPC environment.

We also give a word of caution to researchers completing differential expression analysis on tissue domains 
or clusters defined on the same expression data, which leads to circularity and could result in overinterpretation 
of the function of the defined tissue domains. We propose that our approach and any other method that tests for 
differential expression on clusters defined with the same tested data should be only used to provide biological 
identity to the clusters (i.e., phenotyping). A non-circular application of these methods would require delineat-
ing tissue domains based on images by an expert pathologist, followed by differential expression analyses on 
the pathologist’s annotations. An example of this application is our testing on the glioblastoma Visium  dataset61 
included in this study.
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In summary, considering spatial dependency is needed when conducting differential expression analysis 
in densely sampled spatially resolved transcriptomic experiments. In this study, we demonstrate that applying 
mixed models with spatial correlation structure effectively accounts for the correlation between spots or cells, 
thereby controlling for the inflated type I error rates observed in non-spatial models. Specifically, we show that 
spatial models with an exponential correlation structure provide a better fit to ST data than non-spatial models.

Material and methods
Spatial transcriptomic data sets
Spatial transcriptomics technologies are diverse, ranging in cellular and molecular resolution. Hence, we tested 
the utility of spatial linear mixed models for differential gene expression analysis using a series of data sets that 
reflected the spectrum of cellular and molecular resolution in ST technologies. We obtained publicly available ST 
data from spatial-barcoding technologies, including 10X Genomics’ Visium and NanoString’s GeoMx platforms, 
as well as the imaging technology produced from NanoString’s CosMx Spatial Molecular Imager (SMI). The 
Visium data sets were generated by studies of the brain motor  cortex64 and  glioblastoma61. The GeoMx and SMI 
data sets were obtained from NanoString’s Spatial Organ Atlas  repository65. For each technology, we selected two 
tissue types with two samples for each tissue type (i.e., a total of 4 samples for each technology). More details of 
the selected samples and their access links are provided in the supplemental materials (Table 1; Supplementary 
Table S1). Using these data sets, we tested the utility of spatial models to detect DE genes. For this reason, a 
requisite for sample selection was that it contained biologically meaningful annotations (i.e., tissue domains, 
niches, or clusters) for each ROI/spot/cell. Preparation of expression and annotation data was carried out using 
the R statistical programming software version 4.166. Data was normalized using library size normalization and 
log-transformation in the package  spatialGE67.

Model
In differential gene expression analysis, the goal is to identify genes for which the average expression in a group 
is significantly higher or lower than that in other groups. In the context of ST, the sampling units (cells, spots, 
ROIs) are grouped using either a clustering method or prior knowledge of the tissue (e.g., tissue domains or 
niches). Hence, the objective remains the same: To detect genes with significantly higher or lower expression in 
one group of cells, spots, or ROIs (i.e., spots or cells in a domain or tissue niche) compared to ROIs/spots/cells 
in another tissue domain or outside of the tissue domain of interest.

For the non-spatial case of our DE analysis proposal, the expression of a given gene ( ys ) at a given sample 
unit location ( s ) can be modeled as:

where µk is the mean expression of the gene in cluster k , and εs is the random error at location s , with 
εs ∼ N

(
0, σ 2

)
. In order to extend this model to the spatial case, we add the effect of the spatial dependency as 

part of the random effects ( Us ) term to account for the correlation among neighboring sampling units as:

where Us is defined as Us ∼ MVN(0,V(θ , d)) , where d represents the distance between two ROIs/spots/cells. 
Several types of covariance structures can define the spatial dependency. In this study, we have tested the use of 
the commonly used exponential covariance structure, which is a particular case of the Matérn covariance struc-
ture, V(θ , d) = τ 2exp

(
−

d
ρ

)
 . Other spatial covariance structures could be used. However, the spaMM R package 

includes support for the exponential structure. Other methods for detecting spatially variable genes also use 
exponential or Gaussian covariance structures (e.g.,  nnSVG43, SPARK-X40). The use of  semiovariograms51 can 
be exploited in future studies that assess the fit of different covariance structures to spatial transcriptomics data.

Application of models on spatial transcriptomic data sets
The application of spatial models to densely sampled tissues can be computationally intensive, particularly as 
the number of ROIs/spots/cells increases. Spatial transcriptomics technologies such as Visium and SMI contain 
thousands of spots or cells, respectively, resulting in massive covariance matrices to manipulate thousands of 
genes. To test for the utility of spatial models over non-spatial linear models, we randomly chose 5000 genes 
in each sample of the GeoMx and Visium data sets. All genes were used in testing for the SMI data sets. Next, 
annotations for each ROI/spot/cell were used to indicate whether the ROI/spot/cell belonged to a biological 
cluster or tissue domain. For each combination of gene and ROI/spot/cell annotation, we fit non-spatial and 
spatial models with exponential covariance structure to test for differential expression between the ROI/spot/
cells assigned to that biological annotation and the rest ROI/spot/cells (Table 1). Additionally, we assessed the 
utility of spatial models in pairwise comparisons between two given cell types of the SMI data sets. Specifically, 
we tested for differentially expressed genes among tumor cells, macrophages, and T cells in the non-small cell 
lung cancer (NSCLC) data set and among hepatocytes, stellate cells, and non-inflammatory macrophages of the 
liver data set. The models were fit using the spaMM68 R package on a high-performance computing (HPC) envi-
ronment with one core assigned to each test and 8 GB of memory per core. The Akaike Information Criterion 
(AIC) was used to compare the spatial and non-spatial models. The AIC is an estimate of model fit based on the 
log-likelihood penalized by the complexity of the model using the formula AIC = 2k − 2ln(L̂) , where L̂ is the 
estimated maximum likelihood of the model given the data and k is the number of parameters in the model. 
Given a set of models, the best-fitting model out of the group is the one with the smallest AIC. All analyses were 
conducted in R (version 4.1)66, and visualizations with the ggplot269 package.

ys = µk + εs

ys = µk + Us + εs
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Data availability
All data sets in this study are publicly available. Please refer to Supplementary Table S1 for more information 
and links to access the data sets.

Code availability
The code to conduct data pre-processing and running the models in an HPC environment can be found at https:// 
fridl eylab. github. io/ diff_ expre ssion_ spati al_ linear_ models/ diff_ expr_ spati al_ linear_ models. html.
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