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ORIGINAL  ARTICLE  
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ABSTRACT 

Background. There is interest in identifying novel filtration markers that lead to more accurate GFR estimates than 

current markers ( creatinine and cystatin C) and are more consistent across demographic groups. We hypothesize that 
large-scale metabolomics can identify serum metabolites that are strongly influenced by glomerular filtration rate ( GFR) 
and are more consistent across demographic variables than creatinine, which would be promising filtration markers for 
future investigation. 
Methods. We evaluated the consistency of associations between measured GFR ( mGFR) and 887 common, known 

metabolites quantified by an untargeted chromatography- and spectroscopy-based metabolomics platform ( Metabolon) 
performed on frozen blood samples from 580 participants in Chronic Kidney Disease in Children ( CKiD) , 674 participants 
in Modification of Diet in Renal Disease ( MDRD) Study and 962 participants in African American Study of Kidney Disease 
and Hypertension ( AASK) . We evaluated metabolite–mGFR correlation association with metabolite class, molecular 
weight, assay platform and measurement coefficient of variation ( CV) . Among metabolites with strong negative 
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correlations with mGFR ( r < −0.5) , we assessed additional variation by age ( height in children) , sex, race and body mass 
index ( BMI) . 
Results. A total of 561 metabolites ( 63%) were negatively correlated with mGFR. Correlations with mGFR were highly 
consistent across study, sex, race and BMI categories ( correlation of metabolite–mGFR correlations between 0.88 and 
0.95) . Amino acids, carbohydrates and nucleotides were more often negatively correlated with mGFR compared with 

lipids, but there was no association with metabolite molecular weight, liquid chromatography/mass spectrometry 
platform and measurement CV. Among 114 metabolites with strong negative associations with mGFR ( r < −0.5) , 27 were 
consistently not associated with age ( height in children) , sex or race. 
Conclusions. The majority of metabolite–mGFR correlations were negative and consistent across sex, race, BMI and 
study. Metabolites with consistent strong negative correlations with mGFR and non-association with demographic 
variables may represent candidate markers to improve estimation of GFR. 

GRAPHICAL ABSTRACT 

Keywords: filtration markers, GFR, kidney function, metabolites, metabolomics 

KEY LEARNING POINTS 

What was known: 

• More accurate estimation of glomerular filtration rate ( GFR) is needed in adults and children. Errors in estimated GFR re- 
flect the contribution of non-GFR factors to serum levels of endogenous filtration markers, such as creatinine, which differ 
systematically across demographic characteristics.

• A key step in improving GFR estimation is identifying novel filtration markers that are consistently associated with measured 
GFR ( mGFR) across different patient characteristics, and less strongly related to patient demographics than creatinine.

• Large-scale metabolomics studies now systematically quantify the levels of hundreds of metabolites in addition to creati- 
nine, enabling the identification of novel markers of GFR.

This study adds: 

• We evaluated the consistency of associations between mGFR and 887 common, known metabolites in frozen blood samples 
from 2860 adults and children with chronic kidney disease from three studies.
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Consistency of metabolite–mGFR correlation 3

• A total of 561 metabolites ( 63%) were negatively correlated with mGFR. Correlations with mGFR were highly consistent across 
study, sex, race and body mass index categories ( correlation of metabolite–mGFR correlations between 0.88 and 0.95) .

• Among 114 metabolites with strong negative associations with mGFR ( r < −0.5) , 27 were consistently not associated with 
age ( height in children) , sex or race.

Potential impact: 

• Metabolites with consistent strong negative correlations with mGFR and non-association with demographic variables may 
represent candidate markers to improve estimation of GFR.

• Inclusion of these novel markers in panel of filtration markers in an estimating equation may allow a unified GFR estimating 
equation, which enables consistent GFR estimates from pediatric to adult practices and across different ethnicities.

• For next steps, it will be necessary to develop targeted assays of the metabolites most highly correlated with mGFR, and test 
the panel in a larger number of cohorts in diverse population settings.

INTRODUCTION 

Improved estimation of glomerular filtration rate ( GFR) is needed 
to minimize errors in the definition, classification and manage- 
ment of chronic kidney disease ( CKD) in adults and children [1 ]. 
The gold standard for GFR assessment, measured GFR ( mGFR) , 
is laborious [2 ], hence estimated GFR ( eGFR) is generally used 
in clinical decision-making and research studies [3 , 4 ]. Estimat- 
ing equations for GFR incorporate blood levels of filtration mark- 
ers ( metabolites and low molecular weight serum proteins) , the 
most common of which is creatinine, an amino acid metabolite 
( 113 g/mol) ( eGFRcr) . Creatinine is easily and reliably measured, 
generated at a relatively constant rate by muscle and cleared pri- 
marily by glomerular filtration, making it an attractive option for 
estimating GFR. However, creatinine levels are also affected by 
a variety of non-GFR factors including differences in amino acid 
metabolism in liver or muscle, diet, kidney tubular secretion and 
gastrointestinal elimination [5 –7 ]. In both adults and children, 
there are differences in the relationship between creatinine and 
mGFR across age, race and sex [8 –11 ]. As a result, eGFRcr equa- 
tions use demographic factors as a surrogate for muscle mass 
to increase accuracy, but still have errors > 30% of their target 
measured GFR in over 10% of patients. 

There is much interest in identifying filtration markers that 
improve the accuracy of GFR estimation without reliance on 
patient demographics, since demographic factors may be sur- 
rogates for non-GFR determinants of metabolites other than 
creatinine [12 ]. Large-scale metabolomics studies now system- 
atically quantify the levels of hundreds of small molecules in 
patient samples, enabling the identification of novel markers of 
GFR [13 –18 ]. A key step in improving GFR estimation is identi- 
fying candidate metabolites—metabolites that are consistently 
associated with mGFR across different patient characteristics, 
and less strongly related to patient demographics than creati- 
nine. In addition, it is also useful to understand how different 
metabolite classes relate to mGFR correlations. 

We hypothesize that large-scale metabolomics can identify 
serum metabolites that are strongly influenced by GFR and 
are more consistent across demographic variables than creati- 
nine which would be promising filtration markers for future in- 
vestigation. The aim of the current study was to quantify the 
associations between metabolites and mGFR in three cohorts in- 
cluding adults and children with CKD in the USA. We tested the 
central hypothesis that correlations of metabolites with mGFR 
would be highly similar by age, race, sex and research study, and 
describe how they vary by metabolite class and other metabo- 
lite characteristics. For those metabolites with strong nega- 
tive correlations with mGFR, we sought to determine whether 

there were markers that were not associated with demographic 
variables. 

MATERIALS AND METHODS 

Study population 

The Chronic Kidney Disease in Children ( CKiD) study is an 
ongoing multicenter observational cohort study of children 
and adolescents aged between 6 months and 16 years with 
eGFR between 30 and 90 mL/min/1.73 m2 from 59 centers in 
North America [19 , 20 ]. mGFR was determined by plasma clear- 
ance of iohexol administered by intravenous bolus [19 ]. Global 
metabolomics and mGFR were performed at the 6-month and 
12-month visits, respectively. For this analysis, we excluded par- 
ticipants with missing metabolites or phenotype information, 
resulting in a total of 580 individuals.

The Modification of Diet in Renal Disease ( MDRD) study was 
a multicenter randomized clinical trial that enrolled patients 
with GFR between 25 and 55 mL/min/1.73 m2 to examine the ef- 
fects of protein restriction and blood pressure control on CKD 

progression [21 ]. mGFR was determined by the urinary clear- 
ance of 125 I-iothalamate administered by subcutaneous injec- 
tion. Global metabolomics and mGFR were performed at the 
12-month visit. For this analysis, we excluded participants with 
missing metabolites or phenotype information, resulting in a 
total of 674 individuals. 

The African American Study of Kidney Disease and Hyper- 
tension Cohort Study ( AASK) was a multicenter observational 
study consisted of 1094 individuals recruited from 21 centers 
with CKD attributed to hypertension, urine protein–creatinine 
ratio ≤2500 mg/g, mGFR between 20 and 65 mL/min/1.73 m2 , 
and without a diagnosis of diabetes mellitus [22 , 23 ]. mGFR was 
determined by urinary125 I-iothalamate clearance, similar to the 
MDRD study [24 ]. Global metabolomics and mGFR were per- 
formed at the baseline visit. For this analysis, we excluded par- 
ticipants with missing metabolites or phenotype information, 
resulting in a total of 962 individuals. 

Metabolomic profiling 

Serum metabolite profiling was conducted using untargeted 
mass spectrometry ( MS) by Metabolon, Inc. [25 ] ( Morrisville, NC, 
USA) . Details of sample handling, global metabolomics assay 
methods and processing of metabolomics data have been de- 
scribed previously [26 –29 ]. Briefly, metabolites were standard- 
ized to a median value of 1.0, log transformed to reduce skew- 
ness and then correlated to log-transformed mGFR. Despite 
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Table 1: Clinical characteristics of participants in the current study. 

CKiD ( N = 580) MDRD ( N = 674) AASK ( N = 962) 
N ( % of total) N ( % of total) N ( % of total) 

Race ( white) 501 ( 86.4) 578 ( 85.8) 0 ( 0.0) 
Sex ( female) 228 ( 39.3) 254 ( 37.7) 374 ( 38.9) 
Diabetes 0 ( 0.0) 33 ( 4.9) 0 ( 0.0) 

Mean ( SD) Mean ( SD) Mean ( SD) 

Age 12.1 ( 4.2) 52.1 ( 12.0) 54.5 ( 10.6) 
BMI ( kg/m2 ) 20.6 ( 5.8) 26.8 ( 4.1) 30.6 ( 6.6) 
Z_BMI 0.37 ( 1.2) NA 

c NA 

mGFR ( mL/min/1.73 m2 ) a 52.7 ( 24.4) 29 ( 13.2) 46 ( 13.0) 
Urine PCR ( mg/g) b 324 ( 123, 1000) 185 ( 53, 865) 80 ( 28, 359) 
Serum creatinine ( mg/dL) 1.38 ( 0.89) 2.73 ( 1.47) 1.87 ( 0.68) 
Serum cystatin C ( mg/L) 1.57 ( 0.73) 2.50 ( 0.91) 1.59 ( 0.51) 
BUN ( mg/dL) 28 ( 15) 34 ( 16) 24 ( 10) 

a In CKiD, GFR is measured by iohexol rather than iothalamate as in AASK and MDRD. 
b Median and interquartile range are shown. 
c Z-scores for BMI were not calculated for adults in MDRD or AASK. 
BUN, blood urea nitrogen. 

using the same methods, the exact metabolites which crossed 
the limit of detection in each study varied. We focused on the 887 
metabolites that were profiled in all three cohorts, which were 
involved in a total of 97 pathways across 8 classes ( amino acid, 
carbohydrate, cofactors and vitamins, energy, lipid, nucleotide, 
peptide and xenobiotics) . Molecular weight and the optimal liq- 
uid chromatography/MS ( LC/MS) platform ( late, polar, positive 
early, positive late) to characterize each metabolite was provided 
by Metabolon. Coefficient of variation ( CV) across masked repli- 
cates were obtained from an external study [30 ] which exam- 
ined replicability of metabolomics measurements using sam- 
ples from 49 individuals with CKD during two study visits. 

Statistical analysis 

Baseline characteristics were summarized as frequency, mean 
and percentiles. To compare metabolite–mGFR correlations 
across cohorts, the Pearson correlation was calculated for each 
cohort and metabolite, and compared using scatter plots for 
pairs of cohorts. Subgroup analyses by sex, race ( Black, white 
and other) , and body mass index ( BMI) category ( < 25, 25–30 
and > 30 kg/m2 ) were conducted by calculating correlations 
with mGFR within subgroups in each study and then compar- 
ing them across subgroups. To minimize differences driven by 
the different range of mGFR across studies, a sensitivity anal- 
ysis was conducted limiting the data to mGFR between 30 and 
60 mL/min/1.73 m2 . 

To investigate whether physiological and technical factors 
relate to metabolite–mGFR correlation, we examined in uni- 
variate and then multiple regression analysis the associa- 
tion of metabolite–mGFR correlation with biological pathways 
( class of metabolites) , molecular weight groups ( ≥500 g/mol and 
< 500 g/mol) , CV and LC/MS platforms. A mixed effects linear re- 
gression model was constructed using the aggregate data from 

all three cohorts ( CKiD, MDRD and AASK) , where metabolite–
mGFR correlation was regressed on cohort, pathway ( metabolite 
class) , molecular weight, CV and LC/MS platform, using metabo- 
lite as a random effect. In this model, the 369 metabolites neg- 
atively associated with mGFR ( r < 0) with complete data on 
molecular weight, CV, pathway ( metabolite class) and LC/MS 
platform were used. For subgroup analysis with sex and race, 

metabolite–mGFR correlations for the metabolites were calcu- 
lated separately for each sex and race, and an individual linear 
mixed model was constructed using cohort, age or sex, molecu- 
lar weight, CV, pathway ( metabolite class) and LC/MS platform 

as fixed effects, and metabolite as random effects. Analyses 
were performed with raw correlation values and after applying 
a Fisher-transformation for normalization. Since results were 
similar between raw correlation and Fisher-transformed corre- 
lations, results are presented on the original correlation scale for 
ease of interpretation. 

For metabolites strongly negatively associated with mGFR 
( r < −0.5) , we tested for independence from demographic vari- 
ables. In each study, we regressed log-transformed metabolite 
levels on age ( height for children) , sex and race, while adjust- 
ing for mGFR and urine protein–creatinine ratio. Bonferroni cor- 
rection was then performed in each study to identify metabo- 
lites with significant associations with demographic variables 
( 2.5 × 10−4 for CKiD, 6.6 × 10−4 for MDRD and 2.7 × 10−4 

for AASK) . We considered non-significant associations with all 
demographic variables in two or three of the three studies as 
consistently not associated. We also tested for interactions of 
demographic variables with mGFR. 

A threshold of α = 0.05 was used to determine signifi- 
cance of each covariate. All statistical tests and plots were 
generated using R software version 4.0.3, with ggpubr package 
version 0.4.0. 

RESULTS 

Study population 

Study populations differed in level of GFR, age, race, clinical char- 
acteristics and cause of kidney disease. Mean [standard devia- 
tion ( SD) ] mGFR was 53 ( 24) in CKiD, 29 ( 13) in MDRD and 46 ( 13) 
mL/min/1.73 m2 in AASK. The distribution of demographic vari- 
ables and clinical characteristics for the three studies is detailed 
in Table 1 . In CKiD, 6% of participants had hemolytic uremic syn- 
drome, 25% had non-HUS glomerular disease, 62% had heredi- 
tary causes of CKD and 7% had other causes of kidney disease. 
In MDRD, 24% of participants had polycystic kidney disease, 28% 

had glomerular disease and 47% had other causes of CKD. In 
AASK, all participants had hypertension as the primary assigned 
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Figure 1: Distribution of directly mGFR and correlation with metabolites. ( A) Kernel density plot of mGFR of 580 participants in CKiD, 674 participants in MDRD and 

962 participants in AASK. The x -axis is plotted in log scale. ( B) Kernel density plot of metabolite–mGFR correlation in CKiD, MDRD and AASK ( 887 metabolites) . Dotted 
lines represent the median value for each group. 

cause of CKD. The distribution of mGFR is shown in Fig. 1 A. mGFR 
values in CKiD and MDRD spanned a > 5-fold range of variation 
compared with a < 3-fold range in AASK ( 5th–95th percentiles: 
20–97, 10–50 and 24–64 mL/min/1.73 m2 , respectively) . 

Comparison of metabolite–mGFR correlations 
across studies 

The distribution of 887 metabolite–mGFR correlations was wide 
and similar in CKiD, MDRD and AASK [median ( 5th to 95th) per- 
centiles of −0.11 ( −0.68 to 0.22) , −0.08 ( −0.71 to 0.29) and −0.07 
( −0.54 to 0.20) , respectively]. A total of 561 of the correlations 
were negative ( 63%) , with more left skew observed for MDRD 

and CKiD compared with AASK ( Fig. 1 B, Supplementary data,
Table S1) . The metabolite–mGFR correlation distributions were 
even more similar across cohorts in a sensitivity analysis re- 
stricted to only those individuals with mGFR between 30 and 
60 mL/min/1.73 m2 ( Supplementary data, Fig. S2) . 

The correlations between metabolites and mGFR were 
highly consistent among studies. The correlation of correlations 
for CKiD vs MDRD was 0.88, for CKiD vs AASK was 0.88 and 
for MDRD vs AASK was 0.91 ( Fig. 2 A–C) . The most negatively 
correlated individual metabolites ( class) were: pseudouridine 
( pyrimidine metabolism) ; N6-carbamoylthreonyladenosine 
( purine metabolism) ; C-glycosyltryptophan ( tryptophan 
metabolism) ; 1-methylguanidine ( guanidino and ac- 
etamido metabolism) , N-acetylneuraminate and erythronate 
( aminosugar metabolism) ; O-sulfo-L-tyrosine ( xenobiotics) ; 
and 4-acetamidobutanoate ( polyamine metabolism) 
( Supplementary data, Table S1) . For pseudouridine, the cor- 
relation with mGFR was −0.87 in CKiD, −0.84 in MDRD and 
−0.77 in AASK, vs −0.68, −0.86 and −0.64, respectively, for 
serum creatinine. 

Comparison of metabolite–mGFR correlations across 
sex, race and BMI 

We observed a similar consistency of metabolite–mGFR corre- 
lations within each study across all categories of sex, race and 
BMI ( correlation of correlations for sex, r > 0.93; race, r > 0.89; 
BMI, r > 0.89 in adults and r > 0.76 in children, Fig. 2 D–H, 
Supplementary data, Fig. S3) . 

Other metabolite factors related to correlation with 

mGFR 

Several biological and technical factors were associated with the 
strength of metabolite–mGFR correlations. The strongest fac- 
tor associated with metabolite–mGFR correlation was metabo- 
lite class ( Fig. 3 ) . Lipids tended to have weaker correlations with 
mGFR than the other classes. More negative correlations were 
seen among amino acid, nucleotides and carbohydrates com- 
pared with lipids; this was consistent across all three studies 
( Supplementary data, Fig. S4) . 

Univariate analyses of metabolites with a negative corre- 
lation with mGFR showed that larger metabolites ( molecular 
weight ≥500 g/mol) were significantly less correlated with mGFR 
compared with smaller metabolites ( P < .001 for all three co- 
horts, Supplementary data, Fig. S5) . Similarly, metabolites best 
characterized on the LC/MS positive early and polar platforms 
tended to have more negative metabolite–mGFR correlation 
than those characterized on the LC/MS negative and positive 
late platforms ( Supplementary data, Fig. S6) . Metabolite–mGFR 
correlation did not vary by CV across technical replicate sam- 
ples ( Supplementary data, Fig. S7) . Of note, biological path- 
way was related to both molecular weight and LC/MS platform 

( Supplementary data, Figs S8–S10) . 

Linear mixed model to simultaneously assess multiple 
determinants of metabolite–mGFR correlations 

In adjusted models of metabolite–mGFR correlations ( Table 2 ) , 
we found that metabolite class remained a strong predictor of 
negative correlations, with statistically significant differences 
( more negative correlations) for molecules belonging to amino 
acid, carbohydrate, cofactors and vitamins, and nucleotides 
compared with lipids ( all P -values < .01) . Molecular weight, CV 

and LC/MS platforms were not associated with metabolite–
mGFR correlations in adjusted analysis. Study cohort was as- 
sociated with metabolite–mGFR correlation, with weaker cor- 
relations in AASK than the other cohorts likely due to differ- 
ent ranges of mGFR across these studies. In fact, AASK had 
slightly stronger correlations than the other cohorts even when 
restricting the range of GFR to similar values in all studies 
( 30–60 mL/min/1.73 m2 ) . We repeated the regression analy- 
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6 T. Li et al.

Figure 2: Concordance of metabolite–mGFR correlations across studies ( A –C) , sex ( D –F) and race ( G , H) . Scatter plot of metabolite–mGFR correlation values for each of 
the 887 metabolites in three cohorts as pairwise comparisons. Creatinine and pseudouridine are labeled. Dotted lines represent the line of identity. Pearson correlation 

coefficient ( R) and its associated P -value are shown. The number of participants in each comparison is shown in the axis labels. 

sis after stratification by sex and race to allow comparisons 
across these factors. Race and sex were significant covariates for 
metabolite–mGFR correlation but with small effects ( < 0.1) , while 
metabolite class remained highly significant in each of the sub- 
group regression analyses. 

Regression of metabolite levels on demographic 
variables 

For the 114 metabolites with strong negative correlations with 
mGFR ( r < −0.5) in any of the three studies, we regressed log 
metabolite level on demographics adjusted for mGFR and urine 
protein–creatinine ratio to directly estimate these associations 

at the individual level in each study. In CKiD, 43 of the 83 
( 51.8%) metabolites were significantly associated with height 
( P < 6 × 10−4 after Bonferroni correction; height was used in 
place of age due to its known association with mGFR) , 13 ( 15.7%) 
were significantly associated with sex and 26 ( 31.3%) were sig- 
nificantly associated with African American race. Creatinine was 
associated with height ( P < .001) while not significantly associ- 
ated with sex or African American race after adjustment ( P = .03 
for sex and P = .21 for race) in CKiD. In MDRD, 14 of the 101 ( 13.9%) 
metabolites were significantly associated with age ( P < .001) , 30 
( 29.7%) were significantly associated with sex and 4 ( 4.0%) were 
significantly associated with Black race. Creatinine was signif- 
icantly associated with each of the demographic characteris- 
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Consistency of metabolite–mGFR correlation 7

Figure 3: The relationship between biological pathways and metabolite–mGFR correlations. Metabolite–mGFR correlation as a function of pathways, which are colored 
by category. Correlation is calculated as average across all three cohorts ( CKiD, MDRD and AASK) . Creatinine and pseudouridine are labeled. 

tics ( P < .001 for each) . In AASK, 6 of the 47 ( 12.8%) metabolites 
were significantly associated with age ( P < .001) and 24 ( 51.1%) 
were significantly associated with sex. Creatinine was signifi- 
cantly associated with age, sex and race ( P < .001 for CKiD and 
MDRD) . Overall, among the metabolites with strong negative cor- 
relations with mGFR, there were 23 metabolites in CKiD, 64 in 
MDRD and 22 in AASK not associated with any of the three de- 
mographic variables after adjustment for GFR and urine protein–
creatinine ratio ( Table 3 ) . One of these metabolites was shared in 
all studies ( erythritol) and 27 ( 24%) were shared in at least two 
studies ( Supplementary data, Table S2) . We found no interac- 
tions between metabolite levels and demographic variables. 

DISCUSSION 

In three US cohorts with diverse representation in terms of 
age, sex, race and CKD etiology, we evaluated the correlations 
of 887 metabolites with mGFR. We found that the majority of 
correlations ( 63%) were negative, and that they were highly 
consistent across sex, race, BMI and study. Metabolite class was 
associated withinfluenced by non-GFR factors [31 , 32 ]. The most 
widely used GFR estimation equation relies on serum creatinine 
levels and demographic factors. While demographic factors are 
surrogates for some of the non-GFR factors and improve the ac- 
curacy of GFR estimation, significant debate has emerged about 
their use for this purpose, in particular the use of race [33 –35 ]. 
The use of novel filtration markers or a panel of filtration mark- 
ers is likely needed to eliminate or decrease reliance on de- 
mographic factors and increase accuracy of GFR estimates [36 ]. 
Equations using panels of metabolites or low molecular weight 
proteins have been demonstrated to show improved accuracy 
without use of race [16 , 36 –39 ]. Our study suggests that many 
more metabolites with strong negative correlations with mGFR 

and weaker associations with age, sex, race and height than 
creatinine potentially could be incorporated into multi-marker 
panels to improve estimation of GFR. 

Metabolite class was a strong factor in metabolite associa- 
tion with mGFR. Lipid metabolites had the lowest correlation 
with mGFR, presumably as a result of binding to serum pro- 
teins or incorporation into lipoproteins which prevent them 

from being freely filtered. The most negative correlations were 
seen among amino acids followed by nucleotides, and carbo- 
hydrates compared with lipids. However, there remained resid- 
ual variation of metabolite–mGFR correlation within each class. 
Interestingly, we found that within the same class, some end 
products of metabolic pathways had highly negative correla- 
tions with mGFR, as compared with intermediate members of 
the pathway. For example, creatinine is an end product of the 
creatine metabolism pathway with a correlation of r = −0.72 
( averaged across the three studies) , whereas the intermediate 
products such as creatine and guanidinoacetate had correla- 
tions of r = 0.15 and r = 0.22, respectively [40 –42 ]. Similarly, 
in the urea cycle, we found that end products such as urea 
( correlation r = −0.63) and homocitrulline ( correlation r = −0.63) 
were highly negatively associated with mGFR, compared with 
the intermediates such as arginine ( correlation r = 0.06) and 
ornithine ( correlation r = 0.08) . In inosine metabolism, ino- 
sine showed little correlation with mGFR ( average correlation 
r = 0.07) compared with its derivative N1-methylinosine ( average 
r = −0.63) . It may be that among metabolites classes not bound 
to plasma proteins, end products within a pathway are unregu- 
lated, thereby accumulating as GFR declines, whereas interme- 
diates may be highly regulated, limiting their correlation with 
GFR. These findings suggest that an optimal GFR estimating 
equation might be developed by including molecules from a di- 
verse classes and pathways to avoid being susceptible to non- 
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Table 2: Association of study and participant characteristics with metabolite correlations with mGFR. 

Full model 
Full model for mGFR 

30–60 
Sex specific 
correlations 

Race specific 
correlations 

Coefficient P -value Coefficient P -value Coefficient P -value Coefficient P -value 

Study: MDRD Reference Reference Reference Reference 
Study: AASK 0 .09 < .001 −0 .02 .002 0 .05 < .001 0 .03 < .001 
Study: CKiD 0 .00 .93 0 .01 .07 −0 .06 < .001 −0 .04 < .001 
Sex: female Reference 
Sex: male −0 .01 .03 
Race: white Reference 

Race: African American −0 .03 < .001 
Race: other −0 .01 .24 
Molecular weight Q4 Reference Reference Reference Reference 
Molecular weight Q1 0 .03 .50 0 .02 .34 0 .02 .62 0 .09 .12 
Molecular weight Q2 −0 .05 .21 0 .00 .86 −0 .04 .38 −0 .01 .89 
Molecular weight Q3 −0 .05 .22 0 .01 .63 −0 .07 .17 −0 .01 .79 
CV 0 .00 .87 0 .00 .51 0 .00 .95 0 .00 .86 
Class: lipid Reference Reference Reference Reference 
Pathway: amino acid −0 .21 < .001 −0 .11 < .001 −0 .25 < .001 −0 .26 < .001 
Pathway: carbohydrate −0 .36 < .001 −0 .22 < .001 −0 .44 < .001 −0 .45 < .001 
Class: cofactors and 
vitamins 

−0 .15 .005 −0 .06 .06 −0 .14 .02 −0 .16 .02 

Pathway: energy −0 .12 .11 −0 .06 .18 −0 .17 .06 −0 .21 .04 
Pathway: nucleotide −0 .20 < .001 −0 .11 < .001 −0 .26 < .001 −0 .27 < .001 
Pathway: peptide 0 .01 .81 0 .04 .27 −0 .00 .96 −0 .00 .97 
Pathway: xenobiotics −0 .08 .03 −0 .02 .38 −0 .06 .12 −0 .09 .04 
Platform: LC/MS late Reference Reference Reference Reference 
Platform: LC/MS polar −0 .08 .03 −0 .05 .03 −0 .08 .06 −0 .07 .12 
Platform: LC/MS pos early −0 .02 .43 −0 .01 .42 −0 .03 .37 −0 .07 .03 
Platform: LC/MS pos late 0 .07 .06 0 .03 .21 0 .08 .12 0 .14 .01 

Coefficients are the difference in correlation with mGFR ( dependent variable) estimated from a linear mixed model with a random effect for each metabolite. Full 

model includes all the variables in the table. mGFR ( 30–60 mL/min/1.73 m2 ) denotes limiting the metabolite–mGFR correlations to individuals in this GFR range to 
provide a more similar range of mGFR across all three cohorts. Sex- and race-specific correlations were calculated within these subgroups to allow for comparison 
across these factors of the metabolite correlation to mGFR. 

pos, positive. 

Table 3: Number ( %) of candidate filtration marker metabolites a associated with demographic variables in CKiD, MDRD and AASK. 

CKiD ( N = 83) MDRD ( N = 101) AASK ( N = 47) 

Age/height Associated 43 ( 52) 14 ( 14) 6 ( 13) 
Sex Associated 13 ( 16) 30 ( 30) 24 ( 51) 
Race Associated 26 ( 31) 4 ( 4) NA 

b 

Any of above Associated 60 ( 72) 37 ( 37) 25 ( 53) 
Not associated 23 ( 28) 64 ( 73) 22 ( 47) 

Not associated in any study 1 ( Erythritol) 

a Association at Bonferroni level ( P < .05/# candidate metabolites) in each cohort. 
b Race analysis was not performed in AASK because all participants were African American. 
Candidate metabolites defined as having a correlation with mGFR less than –0.5. 
Age was replaced with height in CKiD. 

GFR influences affecting in any one metabolite class or pathway, 
setting or disease [43 ]. 

Our findings have two immediate implications. First, be- 
cause metabolite–mGFR correlations were highly concordant 
across different parameters, we can nominate a large number 
of metabolites as potentially useful filtration markers across a 
broad range of age and mGFR. Second, we show that multiple 
metabolites are less affected by age, sex and race than creati- 
nine. Inclusion of these novel markers in a panel of filtration 
markers in an estimating equation may therefore allow a unified 
GFR estimating equation, which enables consistent GFR esti- 
mates from pediatric to adult practices and across different 

ethnicities [33 , 44 ]. Overall, our findings were encouraging for 
the search for generalizable filtration markers and robust algo- 
rithms for GFR estimation. 

Previous studies identified a handful of metabolites reliably 
associated with estimated GFR [45 ], but to our knowledge, the 
present study is the first to rigorously assess metabolite corre- 
lations with mGFR across a range of patient and marker char- 
acteristics in studies that include children and adults. A po- 
tential limitation of the study is that the current metabolomic 
methods provide relative rather than absolute concentrations 
of each metabolite. For this reason, we focus on correlations 
which show relative agreement rather than directly applying 
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measured metabolite levels to estimate GFR or fit a single re- 
gression or meta-analysis model across all cohorts. Thus, in the 
current study, we examined the correlations with mGFR rather 
than focusing on developing an equation to estimate GFR. An- 
other limitation is the different ranges of mGFR and different 
mGFR measurement methods in the three studies, and the 6- 
month interval between mGFR measurement and samples for 
global metabolomics in CKiD. AASK had a narrower range of log 
mGFR values compared with CKiD and MDRD, reducing the mag- 
nitude of correlations with mGFR. When restricting to mGFR in 
the same range in all studies ( 30–60 mL/min/1.73 m2 ) , the signif- 
icance of study differences in the linear mixed model became 
much weaker and reversed direction. We conclude that even 
though metabolites measured in AASK had a weaker correla- 
tion with mGFR compared with CKiD and MDRD, the striking 
similarities among the three cohorts and across a wide range 
of demographic variables remain valid. CKiD measured GFR us- 
ing plasma clearance of iohexol rather than urinary clearance 
of iothalamate, but our analysis focused on correlations makes 
the results robust to systematic differences between GFR mea- 
surement methods. Possibly, correlations in CKiD may have been 
stronger if samples for global metabolomics had been obtained 
simultaneously with mGFR measurements, as in MDRD and 
AASK. Another limitation is that we did not include low molec- 
ular weight proteins, such as cystatin C, in our analysis, which 
are assayed using different platforms. Use of low molecular pro- 
teins, such as cystatin C, in addition to metabolites, as filtra- 
tion markers in a panel ( of metabolites) for estimating GFR may 
be useful, but would require an additional assay. For this rea- 
son, we confined this analysis to metabolites. Of note, recent 
studies using proteomic assays have demonstrated that a sig- 
nificant fraction of the plasma proteome is associated with GFR 
and may therefore include novel filtration markers, with cys- 
tatin C demonstrating the strongest correlation with mGFR in a 
Swedish cohort [46 ]. Possibly, a combination of metabolites and 
low molecular weight proteins may further improve GFR estima- 
tion. 

For the next steps, it will be necessary to develop targeted as- 
says of the metabolites most highly correlated with mGFR in or- 
der to use absolute metabolite concentrations for multi-marker 
equation development, and to test the panel in a larger num- 
ber of cohorts in diverse population settings, take into account 
differences in mGFR methods, and compare performance with 
existing equations using creatinine and cystatin C and panels 
with low molecular weight proteins. 

In conclusion, the correlations of metabolites with mGFR 
were consistent across a wide range of demographic variables 
including age, sex, race and BMI categories. These findings 
inform identification of novel kidney filtration markers from 

which improved GFR estimating equations applicable to diverse 
populations may be developed. 
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