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Motivated by a DNA methylation application, this article addresses the problem of
fitting and inferring a multivariate binomial regression model for outcomes that
are contaminated by errors and exhibit extra-parametric variations, also known
as dispersion. While dispersion in univariate binomial regression has been exten-
sively studied, addressing dispersion in the context of multivariate outcomes remains
a complex and relatively unexplored task. The complexity arises from a note-
worthy data characteristic observed in our motivating dataset: non-constant yet
correlated dispersion across outcomes. To address this challenge and account for
possible measurement error, we propose a novel hierarchical quasi-binomial vary-
ing coefficient mixed model, which enables flexible dispersion patterns through a
combination of additive and multiplicative dispersion components. To maximize the
Laplace-approximated quasi-likelihood of our model, we further develop a special-
ized two-stage expectation-maximization (EM) algorithm, where a plug-in estimate
for the multiplicative scale parameter enhances the speed and stability of the EM
iterations. Simulations demonstrated that our approach yields accurate inference
for smooth covariate effects and exhibits excellent power in detecting non-zero
effects. Additionally, we applied our proposed method to investigate the associ-
ation between DNA methylation, measured across the genome through targeted
custom capture sequencing of whole blood, and levels of anti-citrullinated protein
antibodies (ACPA), a preclinical marker for rheumatoid arthritis (RA) risk. Our
analysis revealed 23 significant genes that potentially contribute to ACPA-related
differential methylation, highlighting the relevance of cell signaling and collagen
metabolism in RA. We implemented our method in the R Bioconductor package
called “SOMNiBUS.”

K E Y W O R D S

additive dispersion, binomial, DNA methylation, EM algorithm, measurement error, multiplicative
dispersion
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1 INTRODUCTION

This article addresses the challenge in fitting and inferring a multivariate binomial regression model for outcomes
contaminated by errors and exhibiting extra-parametric variations, commonly referred to as dispersion. The primary
motivation behind this work is to optimize the analysis and interpretation of high-resolution large-scale DNA methyla-
tion measures generated from the state-of-the-art bisulfite sequencing (BS-seq) protocol. DNA methylation involves the
addition of a methyl group to the DNA, mostly at cytosine-phosphate-guanine (CpG) sites.1 The raw data obtained from
BS-seq are short sequence reads. After proper alignment and data processing, the methylation level at a single site can
be summarized as a pair of binomial counts: the number of methylated reads and the total number of reads covering the
site, that is, read depth. Such data possess several challenges for statistical analysis. Typically, read depth varies drastically
across sites and individuals, which leads to measures with wide-ranging precision and many missing values.2 Additional
statistical challenges are created by the possibility of data errors, arising from excessive or insufficient bisulfite treatment
or other aspects of the sequencing processes.3,4 To address these challenges, it is critical to develop statistical methods that
are specifically tailored to the unique structure of BS-seq data and enable accurate inference for the association patterns
between DNA methylation, represented as mis-measured binomial outcomes, and a specific disease trait of interest.

1.1 Motivating dataset

In our motivating study, we aim to investigate the association between DNA methylation and the levels of
anti-citrullinated protein antibodies (ACPA), a marker of rheumatoid arthritis (RA) risk that frequently appears prior
to any clinical manifestations,5 using asymptomatic samples drawn from the CARTaGENE cohort. Targeted-region
sequencing captured the DNA methylation levels at approximately 5 million CpG sites in whole blood samples from
48 ACPA-positive and 54 ACPA-negative individuals. Using this data, previous studies6,7 have examined ACPA-related
methylation changes at individual CpG sites. However, region-based association studies, which deal with multivariate
binomial outcomes, have not been explored. The motivation of region-based analyses is multi-fold. First, various studies
have shown that methylation levels are strongly correlated across the genome.8,9 Joint modeling of regional methylation
levels allows us to borrow information from this local correlation structure, thus coping naturally with missing values or
low counts, of which univariate analyses are incapable. Furthermore, many functionally relevant methylation changes
have been found in genomic regions rather than individual CpGs, such as CpG islands10 or genomic blocks.11 These syn-
ergistic changes in methylation across a region often convey more substantial regulatory influence.12 In addition, the
resulting differentially methylated regions (DMR) can be subsequently explored and annotated easily by examining their
overlap with other known genomic features to provide context and perspective of the potential methylation events, which
helps improve the interpretability and reproducibility of the analytical results.

1.2 Motivation for addressing dispersion

To detect truly differentially methylated regions without finding false associations, it is crucial to accurately account
for the sources of variability across individuals. Figure 1A illustrates observed methylation proportions in a targeted
region for our samples. In panel B, it can be seen that P-values testing for methylation differences, assuming a binomial
mean-variance relationship, are much too small. In contrast, allowing for dispersion through a quasi-binomial model
provides P-values in line with null expectation. As such, the restrictive mean-variance relationship implied by a binomial
model may not adequately accommodate the data variability, thus leading to inflation of false positives.

In the context of modeling mis-measured multivariate binomial outcomes in the analysis of BS-seq data (for purified
DNA samples), we have developed a method called SOMNiBUS.13 SOMNiBUS utilizes a hierarchical binomial regression
model and effectively addresses various challenges in BS-seq analysis, including regional testing, estimation of multiple
covariate effects, adjustment for read depth variability and handling of experimental errors. Nevertheless, it is important to
note that its underlying binomial assumption may be overly restrictive and is only applicable when data exhibit variability
levels that are similar to those anticipated based on a binomial distribution, such as purified DNA samples from inbred
animal or cell line experiments.
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F I G U R E 1 Illustration of observed dispersion in a targeted region that underwent bisulfite sequencing. (A) Observed methylation
proportions in one region for two groups of samples (yellow and blue); data are fully described in Section 4. (B) Single-site P-values for
methylation difference between the two groups. Horizontal axis are the P-values estimated from either binomial (ignoring dispersion) or
quasi-binomial (accounting for dispersion) GLMs. Vertical axis shows the empirical P-values computed from 199 permutations; the empirical
P-value is a benchmark for valid statistical tests. The lower panels show estimated dispersion for each CpG site using a single-site
quasi-binomial GLM, for (C) the methylation data illustrated before, and (D, E) two simulated regional methylation datasets. Specifically, data
in (D) were simulated from a multiplicative-dispersion-only model (𝜙 = 3, 𝜎2

0 = 0), and (E) from a model with both a multiplicative dispersion
and a subject-level RE (𝜙 = 3, 𝜎2

0 = 3); see Section 2 for detailed model formulations and notation definitions relating to panels (D) and (E).

In this work, we explicitly address dispersion in the modeling of mis-measured multivariate binomial outcomes.
Our approach naturally accommodates more complex biological samples in methylation applications, including human
samples or samples with mixed cell types. These samples often exhibit variability that deviates from a binomial distri-
bution. To address this, we propose a novel hierarchical quasi-binomial varying coefficient mixed model. Additionally,
we develop a two-stage quasi-likelihood-based expectation-maximization (EM) algorithm and provide a computationally
simple method for estimating the variance of the varying coefficient estimates.

1.3 Literature review

The importance of accounting for dispersion in BS-seq data has been well recognized in analysis of single CpG sites.
Existing single site approaches use either additive overdispersion models, or multiplicative under- or overdispersion mod-
els to describe the variation driving the dispersion. In a multiplicative model, one includes a multiplicative scale factor,
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that is, the dispersion parameter, in the variance of response. Thus, the dispersion inflates or deflates the variance esti-
mates of the covariate effect by the multiplicative factor. Such approaches include the quasi-binomial regression model14

and the beta-binomial regression model.15-17 In contrast, additive methods add a subject-level random effect (RE) to
capture the extra-binomial variation among individual methylation proportions, which are derived from counts of methy-
lated and unmethylated reads. Both ABBA12 and MACAU,18 that use binomial mixed effect models, fall in this category.
An advantage of the multiplicative approach, particularly the quasi-binomial model, is that it naturally allows for both
overdispersion and underdispersion, whereas the additive model only allows overdispersion. On the other hand, the addi-
tive overdispersion approach links directly with a multilevel model and can be readily extended to analyze data with a
hierarchical or clustering structure among the samples.

The challenge of accounting for dispersion when analyzing regional methylation data (ie, multivariate outcomes)
is further complicated by several factors. First, even within a small genomic region, different CpG sites may exhibit
different levels of dispersion and strong spatial correlation (Figure 1C). Hence, a multiplicative dispersion model with
a common dispersion parameter does not adequately capture the dispersion heterogeneity across loci (Figure 1D). In
addition, challenges are presented by the complex correlation structure in the regional methylation data. Apart from the
spatial correlations among neighboring CpGs, there may be additional correlations among methylation measurements
on the same subject. Ignoring this within-subject correlation could lead to overestimation of precision and invalid statis-
tical tests.19 One means to accommodate such a correlation structure is to add a subject-level RE. However, extra random
dispersion can arise, beyond that introduced by the subject-level RE,20-22 and thus, often, parametric distributions with
restrictive mean-variance relations poorly describe the outcomes for individual subjects.23-25 Hence, properly addressing
both multiplicative and additive sources of dispersion in methylation data is essential for making reliable inference at
the region level.

1.4 Overview of the proposed approach

To overcome the limitations and challenges of existing methods (see more details in Supplementary Table S1 and Sup-
plementary Section 1), we propose a novel approach for identifying DMRs, dSOMNiBUS (dispersion-adjusted SmOoth
ModeliNg of BisUlfite Sequencing). Our strategy explicitly accounts for all (known) sources of data variability and effec-
tively addresses the varying degrees of dispersion across loci, thus providing accurate assessments of regional statistical
significance.

Specifically, we assume that the observed methylation counts arise from an unobserved latent true methylation state
compounded by errors. These true methylation counts are then described by a quasi-binomial varying coefficient mixed
model. Such a flexible model does not require exact information about the outcome distribution but only specifies the
mean and variance for the conditional distribution of the outcome given covariates and subject-specific REs. For simplic-
ity, we assume this variance depends on the mean and a multiplicative dispersion parameter (MDP). The combination
of subject-specific REs (ie, additive overdispersion) and multiplicative dispersion enables flexible dispersion patterns in
a region (Figure 1E), which is highly plausible in methylation data (Figure 1C). In addition, this formulation entails
both subject-specific (ie, conditional) and population-averaged (ie, marginal) interpretations for the varying regression
coefficients in the model.

Estimating our complex model is quite challenging due to the interplay of multiple factors. First, the true outcomes are
unobserved latent variables, which highlights the need to devise an EM-type algorithm26 to iteratively integrate the com-
plete data log-likelihood function over the distribution of the latent variables (E step) and compute the model parameters
that maximize the integrated likelihood function (M step). However, the full likelihood function for the complete data is
unavailable, requiring the development of a quasi-likelihood-based EM algorithm. In our model, the accurate definition
of the quasi-likelihood (QL) function requires integrating out the subject-specific REs and the REs for smoothness reg-
ularization27; the latter helps avoid overfitting the functional coefficients. This integral, however, cannot be evaluated
exactly.20,28,29 A remedy is an QL analog of the Laplace approximation.30,31 Adding to the complexity, unlike its paramet-
ric analogue, the Laplace-approximated quasi-likelihood (LAQL) function of our model also depends on the MDP. As a
result, it is no longer a linear function of the latent variables, which poses computational difficulties in the E step; see
Section 3.2 for more details.

To address these challenges, we develop a specialized two-stage EM algorithm to optimize the latent
variable-dependent LAQL function of our model. In the first stage, we propose a multi-step plug-in estimator for the MDP,
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which directly utilizes the contaminated data without undergoing the E step. Specifically, we first ignore the measure-
ment error and apply a nested-optimization strategy31 to maximize the LAQL function for the contaminated data, and
then use its results to compute a Fletcher’s moment-based MDP estimator.32 We then establish the analytical relation-
ship between this naïve MDP estimator and the MDP estimator for the true latent outcomes. Finally, the MDP estimator
is obtained by plugging the naïve estimator into the established relationship. The second stage involves applying the EM
algorithm to maximize the latent variable-dependent LAQL function evaluated at the MDP estimator obtained in the
first stage. Such a simplified LAQL function is linear in the latent variable, so the E step is reduced to calculating the
conditional expectation of the latent variable given the current estimates, for which the closed-form exact expression is
available. Furthermore, we provide the variance estimator for our parameter estimates and a regional association test
statistic with a simple F limiting distribution.

In summary, we develop a novel model addressing the diverse dispersion patterns in BS-Seq measures of DNA methy-
lation in tissue samples. To our knowledge, no other methods exist that have our sensitivity to detect association with
this kind of data. We develop the complex theory required for testing regional associations, and finally, we demonstrate
the properties of the resulting estimators using both simulation evaluations and data applications; this comprehensive
algorithm is implemented in an R Bioconductor package, SOMNiBUS.

2 MODEL

We consider DNA methylation measures over a targeted genomic region from N independent samples. For each sample i,
i = 1, 2, … N, mi represents the number of CpG sites with nonzero read depth, that is, the number of measured CpG sites.
We write tij for the genomic position (in base pairs) for the ith sample at the jth CpG site, j = 1, 2, … ,mi. We define Xij as
the total number of reads aligned to CpG j from sample i. We denote the true methylation status for the kth read obtained
at CpG j of sample i as Sijk, where k = 1, 2, … Xij. For a single DNA strand read, Sijk is binary and we define Sijk = 1 if the
corresponding read is methylated and Sijk = 0 otherwise. In the presence of experimental errors, the observed methylation
status, written as Yijk can be different from the true underlying status Sijk. We define Yijk = 1 if the corresponding read is
observed as methylated and Yijk = 0 otherwise. We additionally denote the true and observed methylated counts at CpG j
for sample i with Sij =

∑Xij

k=1Sijk, and Yij =
∑Xij

k=1Yijk, respectively. Furthermore, we assume that we have the information
on P covariates for the N samples, denoted as Zi = (Zi1,Zi2, … ZiP), for i = 1, 2, … N.

In the presence of experimental errors, the true methylation data, Sij, are unknown and one only observes Yij. We
assume the following error mechanism

P(Yijk = 1|Sijk = 0) = p0,

P(Yijk = 1|Sijk = 1) = p1.
(1)

Here, p0 is the rate of false methylation calls, and 1 − p1 is the rate of false non-methylation calls. The error parameters p0
and 1 − p1 can be estimated from raw sequencing data at CpG sites known in advance to be methylated or unmethylated.33

Thus, we assume hereafter that p0 and p1 are known.
We then propose a quasi-binomial varying coefficient mixed effect model to describe the relationship between the

true methylated counts, Sij, and Zi. Specifically,

log
𝜋ij

1 − 𝜋ij
= 𝛽0(tij) +

P∑

p=1
𝛽p(tij)Zip + ui, (2)

ui
iid∼ N(0, 𝜎2

0)
Var(Sij|ui) = 𝜙Xij𝜋ij(1 − 𝜋ij),

(3)

where 𝜋ij = E
(

Sij|ui
)
∕Xij is the individual’s methylation proportion (ie, the conditional mean), 𝛽0(tij) and

{
𝛽p(tij)

}P
p=1 are

functional parameters for the intercept and covariate effects. In this model, each 𝜋ij incorporates a subject-specific random
intercept ui, normally distributed with mean 0 and variance 𝜎2

0 . The inclusion of ui allows for sample heterogeneity in
baseline methylation patterns, and at the same time accounts for the correlation among methylation measurements taken
on the same sample. Moreover, we assume the variance of Sij for individual samples to be a product of a MDP 𝜙 and a
known mean-variance function implied by a binomial distribution (ie, V(𝜋ij) = Xij𝜋ij(1 − 𝜋ij)).
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Both the REs u = (u1,u1, … uN)T and the MDP 𝜙 captures extra-binomial dispersion. However, they address two
different aspects of dispersion: u models the variation that is due to independent noise across samples, while 𝜙 aims to
relax the assumption of the conditional distribution of Sij given u such that it is not confined to a binomial distribution.
In fact, our model generalizes the binomial-based model in Zhao et al13 by introducing both the additive dispersion term
u and multiplicative dispersion term 𝜙. Specially, imposing 𝜙 = 1 leads to an additive-dispersion-only (ADO) model and
𝜎2

0 = 0 corresponds to a multiplicative-dispersion-only (MDO) model. When 𝜎2
0 = 0 and 𝜙 = 1, our model reduces to the

binomial-based model in Zhao et al.13

2.1 Marginal interpretations

A key feature of the mixed effect model in (2) is that the regression coefficients 𝛽p(tij) need to be interpreted conditional
on the value of random effect ui. For example, 𝛽p(⋅) describes how an individual’s methylation proportions in a region
depend on covariate Zp. If one desires estimates of such covariate effects on the population average, it is more appropriate
to determine the marginal model implied by (2). After applying a cumulative Gaussian approximation to the logistic
function and taking an expectation over ui, it can be shown that the marginal mean, 𝜋M

ij , has the form

𝜋M
ij = E(Sij)∕Xij ≈ g

( P∑

p=0
a 𝛽p(tij)Zip

)

, (4)

where g(x) = 1∕(1 + exp(−x)), Zi0 ≡ 1, and the constant a = (1 + c2𝜎2
0)
−1∕2 with c =

√
3.41∕𝜋; see detailed derivations in

Supplementary Appendix A (henceforth referred to as “SA A,” “SA B,” etc.). The approximation in (4) is quite accurate
with errors ≤0.001. Thus, the marginal mean induced by our mixed effect model depends on the covariates Zp through a
logistic link with attenuated regression coefficients a𝛽p(tij). Although the smooth covariate effect parameters 𝛽p(tij) have
no marginal interpretation, they do have a strong relationship to their marginal counterparts. Hence, the results from
hypothesis testing H0 ∶ 𝛽p(tij) = 0 describe the significance of the covariate effect on both the population-averaged and
an individual’s DNA methylation levels across a region.

Similarly, the marginal variance of Sij does not coincide with its conditional counterpart as shown in (3). Our mixed
effect model implies a marginal variance of Sij defined as

Var(Sij) ≈ Xij𝜋
⋆

ij (1 − 𝜋
⋆

ij )
{
𝜙 + 𝜎2

0 Xij𝜋
⋆

ij (1 − 𝜋
⋆

ij ) + O(𝜙𝜎4
0)
}
, (5)

where 𝜋⋆ij = g
(∑P

p=0 𝛽p(tij)Zip

)
; see detailed derivations in SA A. Note that 𝜋⋆ij is the mean methylation proportion when

setting random effects ui to zero and is related to the marginal mean 𝜋M
ij via 𝜋⋆ij = g

(
g−1

(
𝜋M

ij

)
∕a

)
. Equation (5) illus-

trates that, under the dSOMNiBUS model, the marginal variance of methylated counts at a CpG site is approximately the
variance of the binomial model multiplied by a dispersion factor 𝜙⋆ij = 𝜙 + 𝜎

2
0 Xij𝜋

⋆

ij (1 − 𝜋
⋆

ij ) + O(𝜙𝜎4
0), which depends on

the combined effect of 𝜙 and 𝜎2
0 . Notably, the marginal dispersion factor 𝜙⋆ij also depends on genomic position tij via the

dependence of 𝜋⋆ij on tij. Consequently, our dSOMNiBUS model in (2) naturally allows dispersion levels to vary across
loci, whereas a MDO model can only accommodate constant dispersion in a region, as illustrated in Figure 1D,E. It is
also clear from Equation (5) that an ADO model only allows for overdispersion, and the combination of additive and
multiplicative dispersion naturally accounts for both over- and underdispersion.

3 ESTIMATION AND INFERENCE

3.1 Laplace-approximated marginal quasi-likelihood function for the complete data

In model (2), the function parameters, 𝛽p(tij), can be represented by the coefficients of chosen spline bases of rank Lp,

𝛽p(tij) =
∑Lp

l=1𝛼plB(p)l (tij), for p = 0, 1, … P. Here
{

B(p)l (⋅)
}Lp

l=1
denotes the spline basis, and 𝜶p = (𝛼p1, … 𝛼pLp)

T ∈ Lp are
the coefficients to be estimated. In this way, we can write the conditional mean in (2) in a compact way as g−1(𝝅) =
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ZHAO et al. 3905

X(B)
𝜶 +X(1)u, where 𝝅 = (𝜋11, … 𝜋1m1 , 𝜋21, … 𝜋2m2 , … 𝜋NmN )

T ∈ [0, 1]M with M =
∑N

i=1mi, 𝜶 = (𝜶T
0 ,𝜶

T
1 , … 𝜶

T
p )T ∈ K

with K =
∑P

p=0Lp, and u = (u1,u2, … uN)T . X(B) is the spanned design matrix for 𝜶 of dimension M × K, stacked with
elements B(p)l (tij) × Zip with Zi0 ≡ 1. X(1) is a random effect model matrix of dimension M × N, with element 1 if the
corresponding CpG site in the row belongs to the sample in the column, and 0 otherwise. If we write the overall spanned
design matrix X =

[
X(B), X(1)] ∈ M×(K+N) and = (𝜶T ,uT)T ∈ K+N , the conditional mean can be further simplified as

g−1(𝝅) = X.

To impose the assumption that the true covariate effect function is more likely to be smooth than jumpy, we add a
smoothness penalty34,35 for each 𝛽p(t). The total amount of such penalty is an aggregate from all smooth terms, that is,


Smooth =

P∑

p=0
𝜆p
∫

(
𝛽′′p (t)

)2dt =
P∑

p=0
𝜆p𝜶

T
p Ap𝜶p = 𝜶TA𝝀𝜶, (6)

where A′
ps are Lp × Lp positive semidefinite matrices with the (l, l′) element

Ap(l, l′) =
∫

B(p)′′l (t)B(p)
′′
l′ (t)dt.

The weights 𝜆p, that is, the smoothing parameters, are positive parameters which establish a tradeoff between the close-
ness of the curve to the data and the smoothness of the fitted curves. A𝜆 is a K × K positive semidefinite block diagonal
matrix of the form A𝝀 = Diag{𝜆0A0, … , 𝜆PAP}. As justified in Wahba36 and Silverman,37 employing such smoothing
penalty during fitting is equivalent to imposing random effects for spline coefficients 𝜶; specifically, 𝜶 is assumed to fol-
low a (degenerate) multivariate normal distribution with precision matrix A𝝀. Therefore, model (2) with penalization (6)
implies the following restraint on the vector of random effects ,

 ∼ MVN(0, 𝜙𝜮−
𝜣
),

where𝜮𝜣 = Diag
{
𝜙A𝝀, 𝜙∕𝜎2

0 IN
}
∈ R(K+N)×(K+N),𝜮−

𝜣
is the pseudoinverse of𝜮𝜣 , and𝚯T = (𝜙𝝀T , 𝜙∕𝜎2

0) denotes the vec-
tor of distinct variance-covariance parameters associated with 𝜮𝜣 . Therefore, the integrated marginal quasi-likelihood
function for the complete data {S,X,Z} can be defined as

qLM(𝜙,𝚯) =
∫

exp
{

ql(S|)(, 𝜙) − 1
2𝜙


T
𝜮𝜣 +

1
2

log {|𝜮𝜣∕𝜙|+}
}

d, (7)

where | • |+ denotes the generalized determinant of a matrix, that is, the product of its non-zero eigenvalues, and
ql(S|)(, 𝜙) is the conditional log-quasi-likelihood function given the values of REs . Specifically, we follow the notion
of extended quasi-likelihood38 and define the following conditional quasi-likelihood

exp
{

ql(S|)(, 𝜙)
}
∝ exp

{

− 1
2𝜙

∑

i,j
dij
(

Sij, 𝜋ij
)
− M

2
log𝜙

}

,

where

dij(Sij, 𝜋ij) = −2
∫

𝜋ij

Sij∕Xij

Sij − Xij𝜋ij

𝜋ij(1 − 𝜋ij)
d𝜋ij (8)

is the quasi-deviance contributed from a single observation. We use the Laplace approximation28,31,39 to evaluate the
integral inside the marginal quasi-likelihood (7). Let ̂𝚯 be the value of  maximizing the integrand in (7) given the
values of variance components𝚯, that is,

̂𝚯 = argmax
∈K+N

{

− 1
2𝜙

∑

i,j
dij
(

Sij, 𝜋ij
)
− 1

2𝜙


T
𝜮𝜣

}

, (9)
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3906 ZHAO et al.

where terms not dependent on have been dropped. By writing the log of the integrand in (7) by a quadratic Taylor series
expansion about ̂𝚯, we have

−2 log
[
qLM(𝜙,𝚯)

]
≈

∑

i,j
d̂ij

𝜙
+M log𝜙 + 1

𝜙
̂

T
𝚯𝜮𝜣̂𝚯 + log ||

|
XTŴX +𝜮𝜣

𝜙

|
|
|
− log ||

|
𝜮𝜣

𝜙

|
|
|+
; (10)

see detailed derivations in SA B. In Equation (10), d̂ij = dij(Sij, 𝜋ij), where 𝜋ij = g(X(l,)̂𝚯) with l denoting the row in the
matrix X corresponding to CpG j for sample i. Ŵ is the weight matrix whose diagonal is Xij𝜋ij(1 − 𝜋ij), and both ̂𝚯 and
Ŵ depend on 𝚯, that is, ̂𝚯 = ̂𝚯(𝚯) and Ŵ = Ŵ(𝚯). The negative half of the right-hand side expression in Equation
(10) constitutes the log of the LAQL function, denoted as Laplace(𝜙,𝚯;S).

Remark 1. (i) Equation (9) implies that, given the values of 𝚺𝚯, the REs  and 𝜙 are orthogonal, which
explains why we parametrize the covariate matrix of as 𝜙𝚺−𝚯. (ii) The LAQL function in (10) cannot be writ-
ten as the sum of a part related only to𝜙 and a part related only to𝚺𝚯 (or𝚯), which implies that the maximum
quasi-likelihood estimate (MQLE) for 𝚯 also depends on the estimate for 𝜙 and vice versa. Thus, it is unde-
sirable to estimate 𝚯 under 𝜙 = 1 and then adjust 𝜙 based on the estimated 𝚯, as in GLMs. Instead, a joint
optimization is needed, that is, finding argmax𝜙,𝚯 Laplace(𝜙,𝚯;S).

3.2 A two-stage estimation algorithm

In the presence of experimental errors, the true methylation data, Sij are unknown, and one only observes Yij, which
is assumed to be a mixture of binomial counts arising from both the truly methylated and truly unmethylated reads.
When Sij is modeled by a parametric distribution, as in Zhao et al,13 the EM algorithm26 provides a computationally
simple way to obtain the maximum likelihood estimate (MLE) of the smooth covariate effects based on the observed data
Yij. However, this computational simplicity does not apply to our quasi-likelihood function in (7). Specifically, we can
evaluate the integral inside our quasi-deviance function dij (8), and obtain d̂ij = −2{Sij log𝜋ij + (Xij − Sij) log(1 − 𝜋ij) −
Sij log

(
Sij∕Xij

)
− (Xij − Sij) log

(
1 − Sij∕Xij

)
}. Then, it is evident that there is a nonlinear term with respect to Sij involved

in the complete-data LAQL function (10), that is,

{
Sij log

(
Sij∕Xij

)
− (Xij − Sij) log

(
1 − Sij∕Xij

)}
∕𝜙.

Therefore, for a trial estimate (𝜙⋆,𝚯⋆), the integrated likelihood (ie, the E step)

Q(𝜙,𝚯|𝜙⋆,𝚯⋆) = ES|Y
{

Laplace(𝜙,𝚯;S)|Y;𝜙⋆,𝚯⋆
}

involves an intractable integral/summation whose exact close-form expression is not available. To circumvent this
problem, we develop a two-stage EM algorithm—first obtain 𝜙 using our proposed multi-step plug-in estimator and then
apply the EM algorithm to maximize the complete-data LAQL function with 𝜙 fixed at the 𝜙.

3.2.1 Stage 1: A multi-step plug-in estimator for 𝜙

The key idea of estimating 𝜙 without undergoing the EM iteration is to derive the induced model for Y by marginalizing
over the “distribution” of S and then equate the MDP implied by such an induced model with the naïve analysis result
obtained by treating Y as error-free. Specifically, based on our assumed mean-variance relationship for S in (3) and error
model for the conditional mean of Yijk given Sijk in (1), we can express the mean and MDP for the observed outcome Y as

𝜋Y
ij = E(Yij|ui) = 𝜋ijp1 + (1 − 𝜋ij)p0

𝜙Y
ij =

Var(Yij|ui)
Xij𝜋

Y
ij (1 − 𝜋

Y
ij )
= 1 + (𝜙 − 1)

(𝜋Y
ij − p0)(p1 − 𝜋Y

ij )

𝜋Y
ij (1 − 𝜋

Y
ij )

;
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ZHAO et al. 3907

see detailed derivations in SA C. When Yijs are truly error-free, these Y -related parameters 𝜋Y
ij and 𝜙Y

ij coincide with the
𝜋ij and 𝜙 for Sij in the true model. Unlike the constant 𝜙 for the true outcome S, the induced dispersion parameter 𝜙Y

ij
varies with each CpG site, when 𝜙 ≠ 1, and its mean across all CpG sites in the dataset is

𝜙Y
ij =

1
M
∑

i,j
𝜙Y

ij = 1 + (𝜙 − 1) 1
M
∑

i,j

(𝜋Y
ij − p0)(p1 − 𝜋Y

ij )

𝜋Y
ij (1 − 𝜋

Y
ij )

. (11)

On the other hand, we can run the naïve analysis that assumes p0 = 1 − p1 = 0. The goal of the naïve analysis is to
maximize the LAQL function Laplace(𝜙,𝚯;Y) as defined in (10), with Y replacing S. Here, the search for parameters is
still constrained to the model space defined in (2) and (3), and thus a constant dispersion parameter estimate 𝜙Y will be
obtained. We assume that 𝜙Y is an estimate for the mean of individual dispersions, 𝜙Y

ij ; simulation results show that this
is a reasonable assumption (Supplementary Figure S17). Therefore, once the naïve estimator 𝜙Y is obtained, we can then
plug the Y -related estimates 𝜙Y and 𝜋Y

ij into the relationship in (11) to obtain the estimate for 𝜙. Specifically, we propose
the following steps to compute this plug-in estimator 𝜙.

Step 1: Use the nested-optimization strategy proposed by Wood31 to obtain (𝜙Y
Lik, 𝚯̂

Y
) = argmax𝜙,𝚯 Laplace(𝜙,𝚯;Y).

In summary, this algorithm has an outer iteration for updating 𝚯 and 𝜙 using Newton’s method, with each
iterative step supplemented with an inner iteration to obtain ̂𝚯 (9) corresponding to the current 𝚯; the
detailed description is summarized in the SA D.

Step 2: First calculate a moment-like dispersion estimator, 𝜙P, based on equating Pearson’s 𝜒2 goodness-of-fit statis-
tic to its expectation under the model. In the presence of random effects, such an expectation equals to M
minus the effective degrees of freedom (EDF) of the model,40 which depends on the magnitude of 𝚯̂

Y
and

is smaller than K + N, the dimension of . We then adjust 𝜙P using Fletcher’s method32 to improve the sta-
bility of 𝜙P. The detailed description is summarized in the SA E. The final estimator obtained in this step is
denoted as 𝜙Y .

Step 3: Plug the 𝜋Y
ij from Step 1 and 𝜙Y from Step 2 into (11), that is,

𝜙 = (𝜙Y − 1)

[
1
M
∑

i,j

(𝜋Y
ij − p0)(p1 − 𝜋Y

ij )

𝜋Y
ij (1 − 𝜋

Y
ij )

]−1

+ 1. (12)

Remark 2. (i) When Y is error-free, running Steps 1 and 2 yields estimates for 𝚯,  and 𝜙 in our model. (ii)
Our dispersion estimator combines the quasi-likelihood (Step 1) and moment-based (Step 2) estimation. Due
to the lack of orthogonality, joint optimization for 𝚯 and 𝜙 should be performed to provide MQLEs, 𝜙Lik and
𝚯̂ (and thus 𝜋ij). However, the MQLEs, in particular, the estimator for the dispersion parameter, can be biased
in finite samples.41 Therefore, instead of using 𝜙Lik, we take a step further and compute the moment-based
estimator for 𝜙 based on 𝜋ij. Simulation results show that such a combined strategy significantly reduces the
bias of the estimated 𝜙, compared to quasi-likelihood estimation alone, regardless of whether error-free or
contaminated data are analyzed; see Supplementary Figures S14-S16. (iii) For regions with many 𝜋Y

ij less than
p0 or greater than p1, (12) can lead to negative 𝜙. To better tackle these pathological cases, we calculate 𝜙 by
averaging only those CpGs with p0 ≤ 𝜋

Y
ij ≤ p1 in (12). Such a stabilized approach produces superior results in

our data application, as illustrated in Figure S1.

3.2.2 Stage 2: EM iteration for 𝚯 and 

In the second stage, we aim to maximize the latent variable-dependent LAQL function evaluated at 𝜙, that is,
Laplace(𝜙,𝚯;S). Dropping the terms not depending on 𝚯, we have

Laplace(𝜙,𝚯;S) =
∑

ij
1∕𝜙{Sij log𝜋ij + (Xij − Sij) log(1 − 𝜋ij)} + f (𝜙,𝚯), (13)
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3908 ZHAO et al.

where f (𝜙,𝚯) = −1∕2
{
̂

T
𝚯𝜮𝜣̂𝚯∕𝜙 + log |XTŴX +𝜮𝜣 | − log |𝜮𝜣 |+

}
. Evidently, this simplified LAQL function is lin-

ear in the latent variables Sij. Therefore, its conditional expectations given the observed data Yij and trial estimate𝚯⋆ can
be simplified as

Q(𝚯|𝚯⋆) = ES|Y

{
Laplace(𝜙,𝚯;S)|Y;𝚯⋆

}
= Laplace(𝜙,𝚯; 𝜼⋆). (14)

E step
In Equation (14), 𝜼⋆ ∈ M are conditional expectations of S given Y evaluated at the trial estimate𝚯⋆, and for our model,
take the form

𝜂⋆ij = E
(

Sij|Yij;𝚯⋆
)
=

Yijp1𝜋
⋆

ij

p1𝜋
⋆

ij + p0(1 − 𝜋⋆ij )
+

(
Xij − Yij

)
(1 − p1)𝜋⋆ij

(1 − p1)𝜋⋆ij + (1 − p0)(1 − 𝜋⋆ij )
,

where 𝜋⋆ij = g(X(l,)
⋆

𝚯), which depends on𝚯⋆ via the dependence of⋆𝚯 on𝚯⋆. Calculating these conditional expectations
𝜂⋆ij constitutes the E step in Stage 2.

M step
Each M step involves maximizing the Q function in (14) to update 𝚯. Similarly, this can be achieved by the
nested-optimization strategy31 described in Step 1 of the first stage (Section 3.2.1 and SA D), but without updating 𝜙.

E-M iteration
We iterate between the E and M steps until convergence to obtain 𝚯̂ and ̂. The first K elements of the final estimates
̂, that is, 𝜶̂, yield estimates of the functional parameters 𝛽p(t), for p = 0, 1, … ,P: 𝛽p(t) =

{
B(p)(t)

}T{
𝜶̂p

}
, where t is a

genomic position lying within the range of the input positions
{

tij
}

, and B(p)(t) = (B(p)1 (t),B
(p)
2 (t), … B(p)Lp

(t))T ∈ Lp is a

column vector with nonrandom quantities obtained from evaluating the set of basis functions {B(p)l (⋅)}l at position t.

3.2.3 Algorithm overview

The complete sequence of steps for our two-stage EM algorithm is outlined in Algorithm 1. A key feature of our algorithm
is that the multiplicative dispersion parameter (also known as the scale parameter), 𝜙, is handled separately from the
mean and variance component-based parameters (,𝚯). Unlike the latter parameters, 𝜙 remains fixed throughout the
EM iterations. This strategy ensures that maximizing the Q function in (14) necessarily increases the quasi-likelihood
for the error-prone outcomes Y, with values consistently ascending at each iteration of the EM update, a fact empirically
validated in Supplementary Figure S18. Detailed derivations can be found in SA F. This appendix clarifies how the Q
function forms a lower bound on the log quasi-likelihood of our observed data Y. By iteratively maximizing this lower
bound, we edge closer to the maximum of the quasi-likelihood of Y, which is otherwise challenging to maximize directly.

Another standout feature of our algorithm is how we handle the regularization parameters 𝚯, which include the
smoothing parameters 𝜆p, p = 0, 1, … P and the variance of RE, 𝜎2

0 . Instead of relying on prediction-based criteria that
target minimizing model prediction error, we adopt a marginal likelihood-based approach for regularization parameter
selection. This approach hinges on integrating out, thereby crafting an objective function solely dependent on𝚯. Such
a formulation allows for direct optimization of a well-defined function of 𝚯, specifically Laplace(𝜙,𝚯; 𝜼⋆) as defined
in Supplementary Equation (S20). Extensively studied by Wood,31 this likelihood-based strategy demonstrates notably
superior convergence properties in selecting regularization parameters compared to prediction-based methods.

In the second stage of Algorithm 1, each M step aims to maximize the Laplace approximated quasi-likelihood,
Laplace(𝜙,𝚯; 𝜼⋆)—the Q function in (14)—using a nested-optimization strategy, similarly employed in the first stage’s
Step 1. This process updates𝝆 = log(𝚯) via Newton’s method. Each trial𝝆 proposed in the outer Newton iteration requires
a subsequent (inner) Newton iteration for solving penalized quasi-score equations for , as detailed in Supplementary
(SA) Section 2.4.2. Within this nested-optimization framework, the negative Hessian matrix of our objective function,
as discussed in SA Section 6.2.2 and supported by Wood’s studies,31,42 is generally positive definite—a critical aspect for
the success of Newton’s method, which relies on inverting the Hessian matrix at each iteration. Yet, challenges such as
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ZHAO et al. 3909

Algorithm 1. A two-stage EM algorithm to estimate the smoothed quasi-binomial mixed model with error-prone
outcomes

Stage 1: Calculate the plug-in estimator 𝜙
Step 1: run the algorithm for error-free outcomes on {Y ,Z,X}; return 𝝅Y , 𝜙Y

lik, B̂
Y

, and 𝚯̂
Y

⊳ Algorithm S1 in SA Section 2.4
Step 2: calculate Fletcher’s moment estimator, 𝜙Y ⊳ Equation (S10)
Step 3: calculate the plug-in estimator 𝜙 ⊳ Equation (12)

Stage 2: E-M iterations with 𝜙 fixed at 𝜙 to estimate  and 𝚯; Specifically
Initialize 𝚯(0,0) = 𝚯̂

Y
,

(0,0) = B̂
Y

; Choose 𝜀 = 10−6; Set 𝓁 = 0, s = 0
repeat
• E step: 𝜂(𝓁)ij = E(Sij ∣ Yij;(𝓁,s))
• M step: 𝚯(𝓁) = argmax𝚯 Laplace(𝜙,𝚯; 𝜂(𝓁)ij ). Specifically

repeat
• Newton’s update for the Laplace approximated marginal likelihood evaluated at data 𝜂(𝓁)ij :

𝝆
(𝓁,s+1) = 𝝆(𝓁,s) −

[
∇2 Laplace

(
𝝆
(𝓁,s);(𝓁,s), 𝜼(𝓁)

)]−1
∇ Laplace

(
𝝆
(𝓁,s);(𝓁,s), 𝜼(𝓁)

)
⊳ 𝝆 = log(𝚯)

⊳ details in SA Section 2.4.2
• Solve U

(
;𝚯(𝓁,s+1); 𝜼(𝓁)

)
= 0 to obtain (𝓁,s+1)

⊳ details in SA Section 2.4.1
s ← s + 1

until ‖𝝆(𝓁,s) − 𝝆(𝓁,s−1)‖2 < 𝜀

𝓁 ← 𝓁 + 1
until ‖(𝓁,s) −(𝓁−1,s)‖2 < 𝜀

return𝚯(𝓁,s),(𝓁,s)

numerical singularities may arise, particularly at the boundary of the parameter space where elements of 𝝆 are extremely
large or effectively zero, or when certain elements of  become unidentifiable.42 Fortunately, the mgcv package43 offers
a robust, user-friendly nested-optimization implementation, featuring step length control and Hessian perturbation for
positive definiteness,44 thereby facilitating successful convergence of Newton’s method to a global maximum. By directly
adopting the mgcv package for the nested optimization, we are able to maximize Laplace(𝜙,𝚯; 𝜼⋆) with enhanced
computational robustness.

In our algorithm implementation, we used natural cubic splines to parameterize the functional parameters 𝛽p(t), with
their interior knots placed at the empirical quantiles of tij. Users of our software can adjust the basis dimension as part of
their model-building process. We recommend keeping Lp fixed at a slightly larger size than it is believed could reasonably
be. Specific choices of Lp for our data application and simulation study are detailed in Section 4.1 and Supplementary
Section 5.1, respectively. Notably, the choice of Lp sets an upper limit on the flexibility of 𝛽p(t), with its actual flexibil-
ity being governed by the smoothing parameter 𝜆p. Therefore, as long as we refrain from choosing overly small basis
dimensions, the exact value of Lp has minimal impact on the fitted model.35

The algorithm begins by initializing the regularization parameters, that is, setting up 𝚯(0) in the Algorithm S1 in
Supplementary Section 2.4. We employ the implementation in the R package mgcv43 for this initialization. The initial
values of 𝜆p and 𝜎2

0 are selected to achieve a rough balance between the leading diagonals of XTWX and 𝚺𝚯. Specifically,
Let aj denote the elements of diag(Aj) and dj denote the corresponding elements of diag(XTWX). We set 𝜆j such that
the mean of

[
dj∕

(
dj + 𝜆jaj

)]
≈ 0.5. Similarly, we determine 𝜎2

0 such that
[
dN∕

(
dN + 1∕𝜎2

0
)]
≈ 0.5, where dN is the last

N elements of diag(XTWX). Here, the initial estimate of W can be derived from the sample methylation proportions
𝜋ij = Yij∕Xij. In summary, this setup ensures that𝚯(0) are neither effectively zero, nor infinity, thus preventing numerical
instability.

Regarding the convergence criterion, we monitor the relative change in the estimate of  between consecutive EM
iterations. The algorithm stops when this relative change falls below a predefined threshold, 𝜖 = 10−6. Additionally, we
impose a maximum number of iterations of 500 to prevent the algorithm from running indefinitely. Owing to the robust
numerically properties of the EM algorithm and the nested-optimization strategy used within the M-step to estimate 𝚯,
our proposed algorithm consistently converges across various settings in our data applications and simulation studies.

 10970258, 2024, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10149, W
iley O

nline L
ibrary on [27/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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3.3 Inference for smooth covariate effects

From the results generated by our two-stage algorithm, we proceed to compute the pointwise confidence intervals (CI)
for the smoothed covariate effects {𝛽1(t), 𝛽2(t), … , 𝛽P(t)}, and obtain tests of hypotheses for these effects. Note that the
inference is carried out conditional on the values of𝚯 and 𝜙, that is, the uncertainty in estimating them is not accounted
for. In addition, we assume negligible remainder error in the basis expansion, 𝛽p(tij) =

∑Lp

l=1𝛼plB(p)l (tij). This is a valid
assumption for smoothing splines, because a sufficiently large Lp is used and 𝜆p controls the variance-bias tradeoff. Under
this assumption, the region-wide test of the null hypothesis H0 ∶ 𝛽p(t) = 0 is equivalent to H0 ∶ 𝜶p = 0.

3.3.1 Confidence interval estimation

Let 𝓁 be an iteration index in the EM algorithm. Given the sequence of𝚯(𝓁) obtained in each M step, the estimate ̂ arises
from iterating between calculating the expectations 𝜼(𝓁) and solving the quasi-score equation for , that is,

U(1)() = 1
𝜙

[
X

T(
𝜼
(𝓁) −𝜦X𝝅

)
− 𝚺(𝓁)𝚯 

]
= 0,

where 𝜦X ∈ M×M is a diagonal matrix with entries Xij. To quantify the uncertainty of this expectation-solving (ES) esti-
mate ̂, we adopt the approach in Elashoff and Ryan.45 Specifically, we can reformulate the E step as an estimating
equation that solves for latent variables S, namely U(2)(S) = S − 𝜼(𝓁) = 0. Thus, this iterative procedure can be viewed as
solving an augmented set of estimating equations; see SA G for details. Under this formulation, we use the established
theory for estimating equations,46-48 and propose a model-based variance estimator for ̂. Specifically, under correct
specification of the first two moments of S, the asymptotic variance of ̂ equals to the observed Fisher information

V̂ar(̂) =
[
X

T(Ŵ − Ŵ𝛿)X + 𝜮̂𝜣

]−1
𝜙. (15)

In (15), Ŵ𝛿 is a diagonal matrix with elements 𝛿ij𝜋ij(1 − 𝜋ij), where

𝛿ij =
Yijp1p0

[
p1𝜋ij + p0(1 − 𝜋ij)

]2 +
(

Xij − Yij
)
(1 − p1)(1 − p0)

[
(1 − p1)𝜋ij + (1 − p0)(1 − 𝜋ij)

]2 .

The detailed derivation is given in SA G. Let V̂ denote the variance estimator in (15) and V̂p be the diagonal blocks of V̂
corresponding to 𝜶p, with dimensions Lp × Lp. We then immediately have the estimated variance of 𝛽p(t): V̂ar(𝛽p(t)) =
{

B(p)(t)
}TV̂p

{
B(p)(t)

}
. Therefore, the confidence interval for 𝛽p(t) at significance level 𝜈 can be approximately estimated

by 𝛽p(t) ± Z𝜈∕2

√

V̂ar(𝛽p(t)), for any t in the range of interest, where Z𝜈∕2 is 𝜈∕2 (upper-tail) quantile of a standard normal
distribution.

3.3.2 Hypothesis testing for a regional zero effect

We can also construct a region-wide test of the null hypothesis H0 ∶ 𝛽p(t) = 0. This test depends on the association
between covariate Zp and methylation levels across the region, after adjustment for all the other covariates. We propose
the following region-based F statistic

Tp =
𝜶̂

T
p

{
V̂p

}−1
𝜶̂p

𝜏p
,
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ZHAO et al. 3911

where {V̂p}−1 denotes inverse if V̂p is nonsingular; for singular V̂p, the inverse is replaced by the Moore-Penrose inverse
{V̂p}−. Here, 𝜏p is the EDF for smooth term 𝛽p(t) and

𝜏p =
bp∑

l=ap

(2F − FF)(l,l), for p = 0, 1, … P,

where ap =
∑p−1

m=0 Lm + 1 if p > 0 and ap = 1 if p = 0, bp =
∑p

m=0 Lm for any p, and (•)(l,l) stands for the lth leading diagonal
element of a matrix. F is the smoothing matrix of our model, which has the form F = (XTŴX + 𝜮̂𝜣)−1XTŴX. Using
the property of our plug-in estimator (Supplementary Section 2.8.1), we can conclude that, under the null hypothesis, Tp
asymptotically follows a F distribution with degrees of freedom 𝜏p and M − 𝜏, where 𝜏 = trace(F), that is, Tp ∼ F𝜏p,M−𝜏 ;
see detailed derivations in SA H.

4 DIFFERENTIAL METHYLATION ANALYSIS OF ACPA STATUS

We apply our new method to genome-wide targeted bisulfite sequencing data from a preclinical study on rheumatoid
arthritis.6,7 We compare the findings of dSOMNiBUS to those of five existing methods: BiSeq,49 BSmooth,50 SMSC,4
dmrseq51 and GlobalTest52 (see Supplementary Section 3.1 for a detailed description of the five existing methods).

4.1 ACPA dataset

In this study, participants were sampled from the CARTaGENE cohort, a population-based cohort of 43 000 subjects aged
between 40 and 69 years, from Quebec, Canada. First, the serum ACPA levels were measured for 3600 randomly-sampled
individuals from the CARTaGENE cohort (https://www.cartagene.qc.ca/), based upon which individuals were classified
as either ACPA positive or ACPA negative. Then, the whole blood samples of the ACPA positive individuals, and a selected
subset of age-sex-and-smoking-status-matched ACPA negative individuals were sent for Targeted Custom Capture Bisul-
fite Sequencing. Specifically, the sequencing used blood cell-specific immune panels that cover the majority of human
gene promoters, active regulatory regions observed in blood, blood-cell-lineage-specific enhancer regions and CpGs from
Illumina Human Methylation 450 Bead Chips. Cell type proportions in the blood samples were also measured at the
time of the sampling. We excluded the samples who reported a diagnosis of RA before the CARTaGENE study started
and samples with missing information on cell type proportions. In our final analysis, there are 48 ACPA-positive and 54
ACPA-negative subjects.

We focused on autosomal analysis only. To better translate the methylation information in the sequence of the genome
into biologically relevant knowledge, we defined the gene-specific methylation regions as the first exon and 2000 base
pairs upstream of each protein-coding gene. For simplicity, we focused on regions with at least 20 CpG sites, and our
final analysis includes 12 569 methylation regions, covering around 1.4 million CpG sites. For details on these regions,
refer to Supplementary Figure S25 for the distribution of the number of CpG sites and Supplementary Figure S26 for
read depth summaries, including the first quartile, median, and third quartile. The association analyses were conducted
with the adjustment for age, sex, smoking status and cell type composition. For dSOMNiBUS, we assumed two settings
of data errors: (1) zero errors: p0 = 1 − p1 = 0 and (2) non-zero errors: p0 = 0.003, p1 = 0.9. The value 0.003 was reported
by Prochenka et al53 as insufficient Bisulfite conversion rate and 0.1 was estimated as the average excessive conversion
rate from a (single-cell-type) bisulfite dataset in Hudson et al54 using the method SMSC.4 We used natural cubic splines
to expand the smooth terms in the model, and its rank Lp was approximately equal to the number of CpGs in a region
divided by 10 for 𝛽0(t), and divided by 20 for 𝛽p(t), p ≥ 1, ensuring around 10 or 20 CpGs in each piecewise polynomial.
Here, the intercept 𝛽0(t) is assigned a larger rank L0 to accommodate a more flexible shape compared to the covariate
effects 𝛽p(t) with p ≥ 1. For smaller regions, we also imposed a minimum rank of 3 for all the smooth terms.

4.2 Dispersion in the data

Figure 2A presents the distributions of estimated multiplicative dispersion 𝜙 and additive dispersion 𝜎2
0 for the test

regions. Overall, widespread overdispersion is observed; 98.5% regions show multiplicative dispersion 𝜙 greater than 1
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3912 ZHAO et al.

F I G U R E 2 (A) Distribution of the estimated 𝜙 and 𝜎2
0 for all test regions. (B) QQ plot for regional P-values on chromosome 18,

obtained from models addressing different types of dispersion. All results are under the zero-error assumption (p0 = 1 − p1 = 0).

and 51.2% regions show additive dispersion 𝜎2
0 greater than 0.05. The Pearson correlation coefficient between the esti-

mated 𝜙 and 𝜎2
0 is −0.015. There exist 49.8% regions with both multiplicative dispersion 𝜙 > 1 and additive dispersion

𝜎2
0 > 0.05.

Figure 2B shows quantile-quantile (QQ) plots for the regional P-values for the effect of ACPA on the 292 regions of
Chromosome 18. The results are compared among four different approaches: (1) dSOMNiBUS which models both the
multiplicative and additive dispersion, (2) the MDO model, (3) the ADO model, and (4) the standard SOMNiBUS which
ignores any extra-binomial variation. Genomic control values 𝜆GC

55 are also reported in Figure 2B; 𝜆GC ≈ 1 indicates
correct control of type I error rate. These QQ plots reveal that, when ignoring either type of dispersion, the distribution of
regional P-values is biased away from what would be expected under the null (ie, elevated genomic control values 𝜆GC).
The inclusion of both multiplicative and additive dispersion is important for correct type I error control.

4.3 ACPA-associated differentially methylated genes

QQ plots in Figure 3 show that dSOMNiBUS is more powerful in identifying ACPA-associated DMRs than the exist-
ing methods we considered. Using Bonferroni thresholds for significance at a 5% family-wise error rate, dSOMNiBUS
(p0 = 0.003, p1 = 0.9) and dSOMNiBUS (p0 = 1 − p1 = 0) identified 33 and 56 significant genes, respectively, with 23
overlapping (Table 1). The other approaches, on the other hand, failed to detect statistically significant signals. Supple-
mentary Figures S2-S4 show the methylation proportions on the top three genes, LINC01168, SPRED3 and PLOD2, for
ACPA-positive and ACPA-negative subjects separately, along with the covariate effect curves estimated from our model.
Within a target region, our software also identifies the subsections whose pointwise CIs do not include 0 (panel “AC-
PA” in Figures S2-S4). For the top three genes, these identified subsections indeed correspond to subregions with notable
methylation differences between ACPA-positive and ACPA-negative subjects (panel B in Figures S2-S4), demonstrating
that our method captures important underlying methylation patterns associated with the covariate of interest.

Gene ontology (GO) analysis was performed on the 23 overlapping genes to uncover functional biological concepts
involved in ACPA positivity. Table S3 shows the over-represented GO terms with Benjamini-Hochberg-adjusted P-value<
0.1 and Figure S5 shows the gene-concept network. Several immune-signaling pathways, such as leukotriene B4 receptor
activity and non-membrane spanning protein tyrosine phosphatase activity are highlighted around the genes LTB4R,
RXFP3 and DUSP22. Metabolic pathways involved in collagen synthesis and degradation are highlighted around the
genes PLOD2 and SLC2A8. In summary, our findings highlight the importance of cell signaling and collagen metabolism
in RA and point to significant protein-coding genes as potential contributors in ACPA-related differential methylation.
These findings were made possible by our dSOMNiBUS model and were not readily available using the existing regional
methylation techniques.
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F I G U R E 3 Q-Q plots for region-based P-values obtained from different methods. The results from the dmrseq method are in Table S2.

5 SIMULATION STUDY

We conducted simulations to assess the proposed inference approach, and to compare the performance of our method
with the five existing methods, in terms of type I error and power. The detailed descriptions of how the simulated data
were generated are given in Supplementary Section 5.1. The simulated methylation regions include 123 CpGs sites. For
our approach, dSOMNiBUS, we used natural cubic splines with dimension Lp = 5 to parameterize the smooth terms of
interest. Figure 4A presents the estimates of the functional parameters 𝛽0(t), 𝛽1(t), 𝛽2(t) and 𝛽3(t) over 1000 simulations,
obtained from dSOMNiBUS. It demonstrates that the proposed method provides unbiased curve estimates for smooth
covariate effects when the regional methylation counts exhibit extra-parametric variation and are measured with errors.

Figure 4B shows the QQ plots for the regional P-values under the null. The results show that ignoring the presence of
additive dispersion leads to substantial estimation bias, poor CI coverage probabilities (see Figure S9) and highly inflated
type I errors. Although the ADO model provides relatively accurate pointwise CIs, the distributions of its regional P-values
are biased away from what would be expected under the null, when multiplicative dispersion𝜙 > 1. Overall, dSOMNiBUS
provides pointwise CIs attaining their nominal levels, and region-based statistics whose distribution under the null is well
calibrated, regardless of the types and degrees of dispersion that data exhibit. Similar results were observed when data
were generated without error (Figures S10 and S11).

5.1 Comparative analysis: dSOMNiUBS versus existing DMR detection methods

Figure 5 further demonstrates the performance of the proposed regional test, when compared with the existing methods
GlobalTest, dmrseq, BSmooth, SMSC, and BiSeq. Here, data were simulated with error parameters p0 = 0.003 and
1 − p1 = 0.1. Figure 5A shows the distributions of P-values for the regional effect of the null covariate Z3. Because we
estimated the empirical regional P-values for BSmooth and SMSC by permutations, both methods are able to control
type I errors, under all settings of 𝜙 and 𝜎2

0 . Both BiSeq and dmrseq show deflated type I error rate when 𝜎2
0 = 0 and

inflated type I error rate when 𝜎2
0 > 0. The distributions of P-values from GlobalTest are well calibrated when the

within subject correlation 𝜎2
0 > 0, but are slightly biased away from the uniform distribution when 𝜎2

0 = 0. When 𝜎2
0 = 0

and 𝜙 = 3, dSOMNiBUS provides slightly conservative type I errors; this bias vanishes when the data were generated
without error (Figure S12). Figure 5B shows the powers of the six methods for detecting DMRs under the 15 settings of
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F I G U R E 4 (A) Estimates of smooth covariate effects (gray) over 1000 simulations, obtained from dSOMNiBUS. The red curves are the
true functional parameters used to generate the data. Data were generated with error (p0 = 0.003, p1 = 0.9), using 𝜙 = 3, 𝜎2

0 = 3 and N = 100.
(B) QQ plot for regional P-values for the test H0 ∶ 𝛽3(t) = 0, obtained from dSOMNiBUS, the MDO model and the ADO model. Data were
simulated with error (p0 = 0.003, p1 = 0.9), under simulation Scenario 1 (outlined in Supplementary Table S4) with N = 100. When 𝜙 = 1,
the results from dSOMNiBUS (green) and the ADO model (purple) are indistinguishable. When 𝜎2

0 = 0, the lines for the MDO model
(orange) and dSOMNiBUS (green) are indistinguishable.

methylation patterns displayed in Figure S6. Here, methylation difference is defined as the maximum difference between
𝜋1(t) and 𝜋0(t) in the region. When data exhibit neither additive nor multiplicative dispersion, dSOMNiBUS andBSmooth
provide the highest power, followed by dmrseq, BiSeq, GlobalTest, and SMSC. When 𝜎2

0 = 0 and 𝜙 = 3, BSmooth
and dmrseq are more powerful than other methods. When there are correlations among methylation measurements on
the same subject, that is, 𝜎2

0 > 0, dSOMNiBUS clearly outperforms the five alternative methods; this superiority remains
when the data were generated without error (Figure S13). In summary, dSOMNiBUS exhibits greater power to detect
DMRs, while correctly controlling type I error rates, especially when the regional methylation counts exhibit (additive)
extra-binomial variation.

5.2 Computational time

Supplementary Figure S19 presents the dSOMNiBUS computation times for estimating and inferring the functional
parameters 𝛽0(t), 𝛽1(t), 𝛽2(t), 𝛽3(t)—the red curves in Figure 4A—under sample sizes of 100,300 and 500. The aver-
age runtimes, based on 10 replications, are 2.73, 49.97, and 246.45 minutes for N = 100,300 and 500, respectively. In
these experiments, the spline coefficients 𝜶 have a dimension of K =

∑3
p=0Lp = 20. The dimension of , which incorpo-

rates both 𝜶 and REs ui, is 20 + N. The computational bottleneck in Algorithm 1 arises from the need to calculate the
inverse of a matrix sized (K + N) × (K + N), an operation iteratively performed during the process of updating given𝚯.
Empirical findings in Figure S19 corroborate that the computational complexity of dSOMNiBUS scales with the order of
O
(
(K + N)3

)
. Despite the significant computational burden posed by larger sample sizes, experiments with increased N

present enhanced statistical power (Figure S20) and greater precision in estimating 𝜙 (Figure S21A), while maintaining
the correct type I error rate (Figure S21B) and achieving nominal pointwise confidence interval coverage (Figure S21C).

5.3 Sensitivity to bisulfite sequencing error parameters

To further assess the robustness of our estimation algorithm and inference methods, we conducted simulations under
four different error rate scenarios: (1) p0 = 0.1 and 1 − p1 = 0.003; (2) p0 = 1 − p1 = 0.1; (3) p0 = 1 − p1 = 0.2; and (4)
the previously used p0 = 0.003 and 1 − p1 = 0.1. Consistent with our prior simulation and data application analyses, we
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F I G U R E 5 (A) QQ plot for regional P-values for the test H0 ∶ 𝛽3(t) = 0, obtained from different approaches. Data were simulated with
error (p0 = 0.003, p1 = 0.9), under simulation Scenario 1 (N = 100). (B) Powers to detect DMRs using the six methods for the 15 simulation
settings in Scenario 2 (N = 100), calculated over 100 simulations.

operated under the assumption that the correct values of p0 and p1 were known. The results are illustrated in Supplemen-
tary Figure S22. Specifically, results demonstrate dSOMNiBUS’s consistent control of type I error rate across these error
scenarios, as shown in the third panel of Figure S22C. In addition, Figure S22B indicates that our 95% confidence inter-
vals generally achieve expected coverage, with minor under-coverage observed at the boundary for 𝛽1(t) at higher error
rates (p0 = 1 − p1 = 0.2). Moreover, the increase in error rates, as depicted in Figure S22C’s second panel, leads to higher
regional P-values for the non-null covariate, implying reduced power to detect DMRs in data influenced by higher error
rates.

In our sensitivity analysis, we further assessed the impact of incorrectly specified p0 and 1 − p1 on our inference
accuracy, with detailed simulation setups in Supplementary Section 5.3. Our analysis reveals that setting p0 or 1 − p1 lower
than their true values leads to substantial underestimation of𝜙, as demonstrated in Table S6 and Figure S23A. Conversely,
setting these rates above their actual values leads to an overestimated 𝜙. This observed trend aligns with the behavior of
our plug-in estimator, as defined in (12), which indicates that decreasing p0 or 1 − p1 leads to a reduced 𝜙, and vice versa.

Accurately determining 𝜙 is critical for correctly estimating and quantifying uncertainty in 𝛽p(t). Therefore,
mis-specifying error rates—either by overstating or understating—results in biased curve estimates (Figure S24), and
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poor CI coverage (Figure S23B). Notably, under-specifying p0 or 1 − p1 inflates the type I error rate (Figure S1), and inter-
estingly, boosts the power, as shown in Figure S23C and Table S5. In contrast, specifying more errors than exist leads to
reduced power (Figure S23C and Table S5), highlighting the sensitivity of our inference results to the accuracy of error
rate specification.

In summary, to ensure the reliability of the analytical results obtained from dSOMNiBUS, a well-grounded under-
standing of p0 and p1 values is required. Fortunately, this prerequisite is achievable in practice; the error parameters p0
and 1 − p1 can be estimated from raw sequencing data by examining CpG sites that are known a priori to be either methy-
lated or unmethylated.33 Assuming accurate specification of p0 and p1, our proposed inferential procedure consistently
demonstrates reliable performance across various scenarios of error intensities.

6 DISCUSSION

Heterogeneity in DNA methylation can be attributed to various factors beyond the trait of interest, including genetic
effects, cellular heterogeneity, past exposures and environmental influences, many of which may not be directly measured.
Accounting for the sources of variability across samples is crucial for identifying differentially methylated regions while
avoiding false associations. This is especially important when analyzing human samples, which contain mixed cell types
and exhibit significant biological variation. Methods that can achieve accurate statistical uncertainty assessment of DMR
from human samples are currently lacking, particularly for sequencing-derived measures of DNA methylation.

To fill this gap, we have developed a hierarchical quasi-binomial varying coefficient mixed model, called dSOMNiBUS,
for testing DMRs in BS-seq data. We applied it to investigate the association between genome-wide whole blood DNA
methylation and ACPA positivity, a preclinical marker of RA risk. Among the 12 569 gene-specific methylation regions,
we identified 23 genes that were determined as significant by both the dSOMNiBUS (p0 = 0.003, p1 = 0.9) and dSOM-
NiBUS (p0 = 1 − p1 = 0), using Bonferroni thresholds for significance at a 5% family-wise error rate. These 23 genes were
found to be enriched in several immune signaling, collagen, and chondrocytes pathways (Figure S5). These identified
ACPA-associated functional pathways further highlight five core genes LTB4R, RXFP3, DUSP22, PLOD2 and SLC2A8.
Among them, the LTB4R gene product is a receptor for the chemoattractant leukotriene B4, a key player in mediating
inflammation.56 DUSP22 is a protein tyrosine phosphatase involved in several immune signaling pathways, and it appears
to suppress autoimmunity.57 PLOD2 codes for an enzyme that catalyzes collagen cross-linking.58 The gene product of
SLC2A8 is a glucose transporter, which plays a role in mediating glucose transport in chondrocytes.59 Therefore, several
lines of congruent evidence support our analytical results, implying that both immune signaling and collagen metabolism
may play important roles in RA risk prior to the manifestation of any clinical symptoms.

These findings were made possible by the increased sensitivity of our dSOMNiBUS method and were not discovered
by the 5 existing regional methylation methods considered in the Sections 4 and 5. We demonstrate that our model,
which incorporates both multiplicative and additive sources of data dispersion, provides a plausible representation of
realistic dispersion trends in regional methylation data. Also, we provide a formal inference for smooth covariate effects
and construct a region-based statistic for the test of DMRs, where outcomes might be contaminated by errors and/or
exhibit extra-parametric variations. Results from simulations show that the new method captures important underlying
methylation patterns with excellent power, provides accurate estimates of covariate effects, and correctly quantifies the
underlying uncertainty in the estimates. The method has been implemented in the R package SOMNiBUS, which has
been published in R Bioconductor. For optimal performance with our package, we recommend targeting regions with ≥
20 CpGs and an average read depth of ≥ 10. Greater heterogeneity necessitates larger sample sizes for detecting subtle
DNA methylation changes. We suggest referencing Figures 5B and S20 for a rough sample size calculation under desired
power levels.

Our model captures dispersion in the regional count data via the combination of a subject-specific RE and a multiplica-
tive dispersion. The latter aims to capture the extra random dispersion beyond that introduced by the subject-to-subject
variation. An alternative way to add multiplicative dispersion might be to add locus-specific REs. Such model would avoid
the problem of estimating 𝜙, but would result in a substantially increased number of REs, in which case our Laplace
approximation is unlikely to provide well-founded inference.30 In addition, such a model would only capture overdisper-
sion. In contrast, our quasi-binomial mixed effect model provides an adequate representation of any kind of dispersion
without much increase in computational complexity.

An extension worth exploring in the future is to model the dispersion parameter 𝜙 as a function of covariates. For
example, the methylation variation across cancer samples has been found to be higher than for normal samples.11,60
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3918 ZHAO et al.

Identification of such disease-associated methylation variation changes might provide further insights into biological
mechanisms. This extension would also allow modeling of the hypothesis that some individuals are more sensitive to their
environment.61 From the methodology point of view, our proposal of combining quasi-likelihood with random effects can
be generally applied to any type of count data for a more comprehensive representation of dispersion.
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