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A B S T R A C T

Objective: The ability to apply results from a study to a broader population remains a primary objective in
translational science. Distinct from intrinsic elements of scientific rigor, the extrinsic concept of generalization
requires there be alignment between a study cohort and population in which results are expected to be applied.
Widespread efforts have been made to quantify representativeness of study cohorts. These techniques, however,
often consider the study and target cohorts as monolithic collections that can be directly compared. Overlooking
known impacts to health from socio-demographic and environmental factors tied to individual’s geographical
location, and potentially obfuscating misalignment in underrepresented population subgroups. This manuscript
introduces several measures to account for geographic information in the assessment of cohort representation.
Methods: Metrics were defined across two themes: First, measures of recruitment, to assess if a study cohort is
drawn at an expected rate and in an expected geographical pattern with respect to individuals in a reference
cohort. Second, measures of individual characteristics, to assess if the individuals in the study cohort accurately
reflect the sociodemographic, clinical, and geographic diversity observed across a reference cohort while ac-
counting for the geospatial proximity of individuals.
Results: As an empirical demonstration, methods are applied to an active clinical study examining asthma in
Black/African American patients at a US Midwestern pediatric hospital. Results illustrate how areas of over- and
under-recruitment can be identified and contextualized in light of study recruitment patterns at an individual-
level, highlighting the ability to identify a subset of features for which the study cohort closely resembled the
broader population. In addition they provide an opportunity to dive deeper into misalignments, to identify study
cohort members that are in some way distinct from the communities for which they are expected to represent.
Conclusion: Together, these metrics provide a comprehensive spatial assessment of a study cohort with respect to
a broader target population. Such an approach offers researchers a toolset by which to target expected gener-
alization of results derived from a given study.

1. Introduction

The Department of Health and Human Service defines research as a
systematic investigation “designed to develop or contribute to general-
izable knowledge” [1]. Distinct from the intrinsic considerations of sci-
entific rigor and reproducibility, often considered foundational elements
of research, generalization (also referred to as external validity) takes a

broader, extrinsic viewpoint, centering on the capacity of study findings
to remain applicable in new contexts. For studies involving human
subjects, this often manifests in the ability of results and conclusions
drawn from a given sample (cohort) to apply across a broader popula-
tion from which it was drawn [2].

Despite a multitude of published conceptual models and frameworks
establishing best practices for research [3–5], successful generalization
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remains a widespread challenge [6]. Historically, generalization issues
have been attributed to sampling bias and unmeasured confounding
induced by non-randomized and observational studies. However, it is
now understood that poor external validity is common, even in gold-
standard randomized control trials [7]. Researchers have since
explored factors underlying this phenomenon, identifying several
contributing factors including differences across study procedures (e.g.,
measurement), logistics (e.g., timing), and personnel [8]. Yet, it is
consistently recognized that failure to generalize is often attributed to a
misalignment between the study cohort and population in which the
results are expected to apply.

From a statistical perspective, this misalignment can be viewed as a
consequence of a non-representative sample, one in which a study
cohort fundamentally differs from the broader population [9]. To
address this, researchers have proposed a diverse set of methodological
approaches. Some, focusing on generalizability of statistical relation-
ships, have introduced analytical techniques to improve the reliability of
inference in both the randomized and non-randomized context [10–12].
Others have posited the lack of alignment (and subsequent failure to
generalize) is driven by poor representation of various populations in
the study cohort as compared to the target population, focusing on
measurement of subgroup heterogeneity and development of post-hoc
corrections [13,14]. Together these efforts have sparked an emerging
field related to fairness and bias of study results. Particularly in pre-
dictive modeling, such imbalances have been shown to significantly
impair model performance and must be addressed through a similar set
of specialized fitting procedures and post-hoc adjustments [15,16].

Together these efforts have pushed the field forward, as evidenced by
a prominent systematic review of over 150 studies that utilized gener-
alizability measures to assess clinical trial populations between
1985–2019 [17]. Efficacy of these approaches, however, is tied not only
to their technical execution, but also to the comparison of the study
cohort with a meaningful set of data representing the theoretic gener-
alized population. This comparison is a non-trivial technical task, one
made more complex by a natural degree of variability expected across
individuals’ socio-demographic, clinical, and social/structural de-
terminants of characteristics. Recognizing that the inclusion criteria of a
study can only define the population expected to be enrolled in a study,
the majority of published approaches have leveraged large databases to
generate reference cohorts (e.g., eligible but non-recruited individuals)
from which to directly assess deviations to the study cohort results. This
approach has been widely successful, with propensity-based models
remaining the state-of-the-art in identifying and adjusting for multifac-
torial cohort imbalances (i.e. all older individuals were male).

Unfortunately, by considering the study and reference cohorts as
monolithic pools of data that can be directly compared, these techniques
overlook a critical element known to impact individual health:
geographical location. To date, the developed approaches have largely
ignored bias introduced as a result of non-uniform sampling distribu-
tions that include individuals with highly distinct social determinants. In
turn, this can obfuscate misalignment between underrepresented groups
in the study and target populations, and precluding correction with the
previously highlighted techniques.

The techniques presented in this manuscript are designed to address
exactly this. First, we outline a series of metrics to quantify the
geographic representativeness of recruitment for a study cohort with
respect to the distribution of individuals from a reference cohort. We
then introduce a series of measures to quantify representativeness of a
study cohort’s individual-level characteristics that account for geo-
spatial proximity. As a case study, these measures are applied to an
ongoing clinical study examining asthma in Black/African American
patients treated at a large pediatric hospital in the Midwestern United
States. Based on these results, we provide a discussion around the
interpretation of metrics values, as well as considerations for their use in
study recruitment and analysis. We conclude by outlining limitations of

geospatial techniques and discussion of future work.
Statement of Significance

Problem Findings from research studies often do not generalize to
individuals outside the study cohort.

What is Already
Known

Successful generalization requires a study cohort be
representative of the population to which results are expected
to be applied. Existing techniques to quantify
representativeness often compare the study and target cohorts
as monolithic pools of data. Overlooking socio-demographic
and environmental factors tied to geographical location.

What This Paper
Adds

This manuscript expands on existing measures of cohort
representativeness. Introducing a series of metrics to account
for geospatial distribution, both with respect to macro-level
patterns of recruitment, and measurement of individual-level
characteristics.

2. Methodology

To account for geospatial distribution in the measurement of cohort
representativeness, this work defined metrics across two themes: First,
Measures of Recruitment, addressing the question are individuals in a
study cohort drawn at an expected rate and in an expected geographical
pattern with respect to those in a reference cohort. Second, Measures of
Individual Characteristics, addressing the question does the study cohort
accurately reflect the sociodemographic, clinical, and geographic diversity
observed across a reference cohort. Details of the metrics comprising each
theme are described below.

2.1. Co-development of metrics

As part of metric development, we recognized a risk of perpetuating
biases by characterizing individuals based on geographic factors. In an
effort to undertake this work in a responsible manner, this project
recruited three members of the Children’s Mercy Research Institute
Community Advisory Board to become part of the study team. These
individuals brought diverse experiences as parents, caregivers, and
community leaders, together providing consultation on more than 30
research projects. For this work, they provided critical insight on the
collection and utilization of specific data, development of metrics, and
the presentation of results. Throughout the following sections, specific
references to this interaction are highlighted.

2.2. Measures of recruitment

Recognizing the importance of improving access and representation
in research, studies now often recruit across large geographic areas. As
such, the comparison of sociodemographic characteristics alone can
mask potential bias, as similar sociodemographic profiles may exist in
multiple distinct geographic areas. Measuring and assuring representa-
tion of subjects across each of these areas is itself a critical factor in
producing generalizable findings. The metrics proposed here are
designed to provide a comprehensive spatial assessment of recruitment
between the set of individuals from a study (S) and reference (R) cohort.
We also define person (p) and region (Gi) as the set of individuals who
reside within a geographic region i.

2.2.1. Coverage and recruitment rate
Recruitment dispersion and balance can be most directly measured

as a percent overlap between the unique geographic areas from which
study cohort is drawn and those in which individuals in the reference
cohort exist (Eq. (1)). This measure, deemed Coverage, can be calculated
at any geospatial granularity (Counties, Census Block groups, etc.) as
defined by a user.
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S = {Gi|∃p[p ∈ S ∧ p ∈ Gi] }

R = {Gi|∃p[p ∈ R ∧ p ∈ Gi] }

Coverage =
|S|

|R|

(1)

Eq. (1): Percentage of unique regions for individuals in study cohort (S) and
reference cohort (R). S and R represent the set of geographic regions with
individuals in S and R, respectively.

Expanding on coverage, we next introduce a measure of Recruitment
Rate (Pi), defined as the ratio between the number of individuals
recruited from geography (Gi) and the number of reference individuals
in that geography (Eq. (2)). This value can be aggregated across the set
of all geographic areas (n) for which reference individuals exist to
summarize recruitment averages and variability.

Pi =
|{p|p ∈ S ∧ p ∈ Gi} |
|{p|p ∈ R ∧ p ∈ Gi} |

MeanRecruitment =
1
n
∑

i
Pi

(2)

Eq. (2): Recruitment rate for a geographic region (i), as number of in-
dividuals from study cohort (S) in i, normalized by number of individuals
from reference cohort (R) in i. Mean recruitment is an average recruitment
across all areas (i).

2.2.2. Spread and hot spots
Next, to better identify situations in which high-coverage recruit-

ment represents a limited geographic area, we calculate a measure of
Spread, defined as the total geographic land area of regions that
comprise members of the study cohort (Eq. (3)). Such a measure can be
further contextualized by normalizing the area of a region by its total
population.

Spread =
∑

∀G∈S
Area(G) (3)

Eq. (3): Total land area (Area) for the set of geographic regions covered by
individuals in study cohort (S).

Rounding out the measure of spread, we add a formal measure of
geographic clustering with a hot spot analysis. Similar to how recruit-
ment rate can be used to identify imbalances in the coverage, spatial hot
spot analysis can be used to identify areas that have higher concentra-
tion of recruited individuals compared to the expected number given a
random distribution. For this work, we utilized the Getis-Ord Gi* algo-
rithm [18] provided by ArcGIS Pro v.3.1.2 (Redlands, CA) [19].

2.2.3. Sensitivity analysis
It is important to recognize that given finite sample sizes, geographic

areas with small reference cohorts may introduce variability into the
proposed metrics (e.g., census tracts with only 1 eligible individual,
contribute either a large positive or negative effect based on if that in-
dividual was recruited – 100% vs. 0%, respectively). To improve the
stability, sensitivity analyses should be performed to identify the mini-
mal size of the reference cohort in a given geography for inclusion.

2.2.4. Expected values of recruitment
As the study cohort represents a subset of the broader reference

cohort, we would not expect recruitment metrics (coverage, recruitment
or spread) from any sample to equal that of the corresponding reference
cohort. This is particularly true for smaller studies, in which cohorts
capture only a fraction of the reference area due to limited sample sizes.
While the absolute values of these metrics provide an overview of
recruitment balance, which is critical for understanding potential biases
stemming from overall geographic variance, we can also contextualize
the magnitude of recruitment metrics. Specifically, we can address the
question, what would be the expected value of a given metric for a random
subset of the reference cohort for a study of size (n). To do so, we introduce

normalized measures of expected representativeness. For each of the
above metrics, 10,000 random samples are drawn from the reference
cohort equal in size to the study cohort and the metric computed treating
this as the study cohort. These samples are then used to calculate the
expected distribution of the metric, on which we can compare the
observed value from the true study cohort.

2.3. Measures of individual characteristics

We next introduce a set of metrics designed to measure alignment
between individual-level data for those who are part of the study cohort
and those in the broader reference cohort while also considering their
geographic proximity. For these metrics, we employ both intra-
individual measures of distance, as well as aggregate measures of
alignment leveraged from case-control studies. A conceptual overview
of both methods can be found below, while more detailed pseudocode
can be found in Appendix A.

2.3.1. Distance-based comparisons
At a granular level, alignment between study and reference cohorts

can be measured as a similarity between the characteristics of in-
dividuals comprising each group. To calculate this, we compute the
pairwise distance between each study cohort member and all reference
individuals from their geographic region (again assigned at any stan-
dardized granularity). Distances are calculated against available
individual-level features in both cohorts (age, sex, acuity, etc.) using
real-valued metrics (e.g., cosine) after hot-encoding discrete data, or by
utilizing mixed-type measures such as Gowers distance [20] on heter-
ogenous datasets directly.

For a given study cohort member, the average of distance to the
associated reference subjects is then contextualized using a series of
bootstrap samples drawn from the reference cohort outside the in-
dividual’s geographic area (equivalent in size to the number of true
reference subjects in the region of the study cohort member). The
average distance between the study individual and this resampled
reference group can be computed. The process is repeated for many it-
erations to estimate an expected average distance of an individual to a
random cohort. The distance to the true refence cohort can then be
compared to this sampling distribution using a standard z-score.

2.3.2. Case-control approach
While the distance-based measures can be averaged across all in-

dividuals in the study cohort to obtain a summary measure, more easily
interpreted aggregate measures of deviation between the study and
reference cohorts can be obtained by utilizing established techniques
developed for comparing the “balance” (i.e. alignment) of cohorts in
case-control studies.

The design of this metric is as follows: For each study cohort member,
1 (or more) random individuals are drawn from the reference cohort in
the same geographic area. These pairs are treated as “matches” and can
directly utilize established case-control balance metrics. For this work
we focus on standardized mean difference, and maximal proportion
difference for continuous and nominal data respectively [21–23]. By
repeating the sampling in a bootstrap approach, it is possible to calculate
an estimation of overall alignment of a given study cohort to the broader
reference cohort.

2.3.3. Sensitivity analysis
As in the recruitment metrics, stability of both individual-level

measures can be tuned by assessing a minimum number of reference
cohort individuals within a given geographic area to assure sufficient
cohort sizes for distributional estimates. For these metrics, sensitivity
analyses can also consider the identification and trimming of highly
distinct reference individuals, by comparing individuals in the reference
cohort to others from the matching geography. Exclusions can be done
directly in the distance-based comparison, or through the use of calipers
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in the case-control approach.

2.3.4. Global comparisons
Although the aforementioned metrics can directly address the

question of how representative study cohort members are of others in
the geographic areas in which they are drawn, we note a potential
limitation. Comparing only individuals within the same geographic re-
gions may draw an arbitrary delineation in space. Two subjects only a
small absolute distance apart may be separated by a geographic
boundary and thus not considered in alignment measures despite
providing potentially relevant information. To address such challenges,
we introduce extensions of the previously described methods to leverage
the entire reference cohort. For the distance-based comparison, the pair-
wise distance between each study cohort member is performed against
all individuals in the reference cohort. This distance is inversely
weighted proportional to either (A) geographic distance between the
two entities, or (B) by a proxy measure of community-based socio-
demographic similarity (e.g., County Health Rankings [24]). For the
case-control comparisons, we continue to utilize random sampling, but
treat the inverse distance as a sampling weight to further adjust the
traditional balance estimates.

Expanding the calculations to consider individuals across multiple
geographic regions has two additional benefits. First, it allows for
improved estimates of representations for individuals in the study cohort
from regions with limited reference cohorts. Second, it allows for the
inclusion of data captured at a population level (e.g., median household
income). By focusing within a geography, data at this level would show
no variability, yet across all individuals, these data can be considered in
addition to individual data.

3. Case study

To demonstrate how the proposed methodology can be used to
quantify geospatial representativeness, each of the aforementioned
methods were applied to an ongoing NIH funded project; the Social
Epigenomics and Asthma (SEA) study.

All data and protocols for the SEA study and this secondary analysis
were approved by Children’s Mercy Kansas City (CMKC) IRB (protocol
#00001292) with a waiver of consent. Linkage of retrospective CMKC
records to identify the reference cohort was covered under repository
protocol (#00001981).

3.1. Study and reference cohorts

Study Cohort: The SEA study enrolled English-speaking families self-
identified as Black/African American, who presented with a child (aged
18 and under) to CMKC Adele Hall emergency department or inpatient
setting with acute respiratory symptoms related to an asthma diagnosis.
Enrolled families completed extensive surveys (e.g., chronic stress,
asthma control) along with nasal and buccal swabs for genomics as-
sessments. This work focuses on subjects recruited between 03/15/2021
and 11/08/2022.

Reference Cohort: Defined as patients eligible, but not recruited for
the SEA study. The cohort was derived from the CMKC electronic health
record (EHR), identifying patients with (A) historical asthma diagnosis
(B) acute care visit during the SEA recruiting period and (C) de-
mographic records identifying race as Black/African American. Addi-
tionally, the CMKC health system is a major referral center, drawing
patients from all 50 US States, and from 14 countries. For this example,
we focused on those individuals from the regional Total Service Area
(TSA, ~70% of all patients), which includes Jackson, Clay, and Platte
Counties in Missouri, and Johnson and Wyandotte Counties in Kansas
[25].

3.2. Data elements

The proposed metrics and techniques are designed to be generaliz-
able for any data shared between the reference and study cohort at
either an individual- or population-level, allowing study teams to best
define those relevant to their cohort. As part of this manuscript, we
demonstrate their use with an array of logistical, demographic, and
clinical variables extracted from the EHR and several public data
sources.

For all patients, both those in the study cohort and those in the
reference cohort, these include:

Geospatial Location: Residential addresses for both study partici-
pants and reference cohort were extracted from the EHR and geo-
coded using the StreetMaps Premium package in ArcGIS Pro. For
reliability, only those addressees coded with a geocoding score >90
were retained. Additionally, suggested by our community-based
team members, an estimate of total distance between the in-
dividual’s address and recruitment location (CMKC Adele Hall) was
also computed via a HIPAA compliant local implementation of the
DeGAUSS GeoMarker tool [26].
Demographics: For the first eligible encounter within the study
period (reference cohort) or recruitment visit (SEA cohort) we esti-
mated age at the time of encounter (encounter date v. date of birth),
and primary insurance. We also captured sex, as well as self-reported
race and ethnicity. Race and ethnicity were harmonized to the OMB
data standards and utilized the approved sixth category to include
“other” when specified by the individual. Individuals with multiple
selected races were categorized as “multiracial” to preserve inde-
pendence of categories. Insurance was categorized into Commercial,
Medicaid, Self-Pay, Combination (Commercial + Medicaid), Other In-
surance, and Unknown.
Clinical Data: All historical clinical diagnoses (rather than billing)
were extracted from the EHR. Asthma diagnosis codes (defined as
ICD10 J45.*, ICD9 493.*, and/or internal diagnosis code description
that included the term Asthma) were used to identify first date of
diagnosis (to estimate history of asthma), as well as identify acute
visits during the study period with respiratory symptoms related to
an asthma diagnosis. Additionally, these data were used to compute
a validated pediatric comorbidity index [27] for all visits during the
study period. Through discussions with community team members,
we added an additional metric to represent the count of eligible visits
during the study period, as a proxy for burden. It was felt that fam-
ilies for whom the first encounter was their first acute visit compared
to those with recurrent visits may differ in a measurable way.
Population-Level Indicator Data: Census tract identifiers were
collected from the U.S. Census Bureau API using the R TidyCensus
package [28] and linked using a spatial join based on the geocoded
location (latitude and longitude) of residential street address.
Decennial Census geographic identifiers were used to join patients
with the census tract of the Child Opportunity Index (COI), utilized
as a sociodemographic indicator for weighting in the individual-level
global comparisons. Note, location was mapped to the 2010 census
tracts, as the COI data is only available for that version of the census
tract geography. Additionally, as part of our DeGAUSS geo-mapping,
social and economic data linked to the census tracts were extracted
including: fraction of population 25 and older with educational
attainment of at least high school graduation, median household
income in the past 12 months, and fraction of vacant houses. Data
were linked to most recent DeGAUSS API and represent information
from the 2018 ACS data.

All data collection and processing were done using R v.4.3.1 and
RStudio v.2023.09.1 [29]. In addition to geocoder tools previously
described, some analytical methods (Measures of Individual Characteris-
tics) and cohort processing utilized Python 3.8 and SciPy v1.7.3 [30].
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Code availability: Underlying code for this study is not publicly avail-
able but will be made available to qualified researchers on reasonable
request to the corresponding author.

4. Results

In total 400 participants were recruited into the SEA study during the
specified period. During this timeframe, CMKC had encounters with
394,189 additional unique patients across all specialties and clinics. Of
those, 42,702 were identified as having a history of asthma, with 12,699
also providing a self-reported race of “Black or African American”. From
this cohort, 2757 patients were identified as having at least 1 encounter
for an asthma exacerbation during the study period, representing a
complete reference cohort (eligible but not recruited for SEA study).
Finally, filtering both cohorts to only those with reliable geocoded
address in TSA, we reach a final study cohort of 380 and a reference
cohort of 2553; representing 95% and 93% of possible patients,
respectively. A descriptive summary of the data elements for the study
and reference cohorts can be found in Table 1.

4.1. Measures of recruitment

Looking first to the overall geospatial distribution of the study and
reference cohorts, Fig. 1 illustrates the frequency of individuals in each
cohort broken out by the set of census tracts comprising the CMKC TSA.

4.1.1. Coverage and recruitment rate
In total, study participants were drawn from 149 unique census

tracts, while the reference cohort covered 380. All tracts with study
participants also included members of the reference cohort, resulting in
an absolute coverage of approximately 39.1%. The expected number of
unique census tracts for a study cohort of this size was ~190, providing
an expected coverage of 78.5%.

To better understand how this coverage was allocated across the
region, Fig. 2 presents the recruitment rate for each census tract. For
stability and as an example of the methodology, an absolute recruitment
rate was calculated for only those regions in which there were more than
3 individuals in the reference cohort (n = 202), resulting in a mean rate
of 10.9% (SD 11.9 %). The expected recruitment rate for the same cohort
was found to be similar at 13.0%. More nuanced assessments of
recruitment can be performed by isolating those census tracts from
which a study cohort subject was already recruited, with a mean (ab-
solute) rate of 18.4% (SD 10.1%).

4.1.2. Spread and hot spots
The 149 unique tracts represent a relatively small geographic abso-

lute area of just 234.47 sq. miles. This represents only about 23 % of the
total coverage of the area covered by the total reference cohort (1000.27
sq. miles). From this population, we note a cohort of this size produces
an expected spread of 420.30 sq. miles (SD: 48.60).

Further, to test for statistical clustering in the study recruitment
(patterns illustrated in the study cohort panel of Fig. 1A), the Getis-Ord
Gi* hot spot analysis was performed, utilizing an inverse distance spatial
relationship and Euclidean distance. Several areas of clustered recruit-
ment were identified. Of note, all such patterns were associated with
regions of high recruitment. No specific pattern was identified for re-
gions with low recruitment (cold spots). These results are overlaid to the
TSA in Fig. 3.

4.2. Measures of individual characteristics

At the individual level, we highlight the complementary nature of
the case-control and distance-base methodologies in robustly describing
representativeness of the study cohort. In this sample experiment, we
assess demographic and individual-level characteristics (age, sex,
ethnicity, insurance, comorbidity score, distance to the hospital, and
eligible visit count). Again, we focus on the subset of patients for which
there were at least 3 reference patients in a matching geographic area.

First, through the series of 500-bootstrapped matching iterations,
Table 2A presents an estimated alignment (balance) between each of the
characteristics of the study and reference cohorts. For completeness, we
illustrate how representativeness can be calculated for the study cohort
utilizing the global weighting approach. Weights were set as the dif-
ference between COI of the study cohort member and that of each
member of the reference cohort, and we expand the evaluated charac-
teristics to include population-level indicators (fraction of population
with high school education, median home income, fraction of vacant
houses). Alignment scores for each variable can be found in Table 2B.
Note: while this approach can be used on all individuals, we keep the
cohort consistent to that in the within-geography analysis. Results for
those excluded from within-geography analyses (reference cohort size
≤ 3) in Appendix B and were found to be generally in line with in-
dividuals in Table 2B.

While these values provide an aggregated measure of alignment
across the study cohort, we then use the distance-based approach to
identify specific outlier members of the study cohort. Second, we
compute a z-score between the calculated distance (Gowers) of each
study cohort member to the reference cohort subgroup in the matching
geography, as compared to distribution of 500 mean-distances to a
random sample of reference cohort. Using these z-scores, we isolate
outlier study cohort members. In this experiment, we identify those in
which z-scores that indicate the study cohort member was statistically

Table 1
Overview of the study and reference cohorts. All continuous data reported as
mean (SD), nominal data as n = (%).

Cohort

Study Reference

n 380 2553
Demographics Age (Years) 6.21 (4.35) 8.06 (5.18)

Sex
Female 173 (45.53) 1095 (42.89)
Male 207 (54.47) 1458 (57.11)
Insurance Type
Commercial 45 (11.84) 498 (19.51)
Commercial &
Medicaid

23 (6.05) 163 (6.38)

Medicaid 303 (79.74) 1800 (70.51)
Self-Pay 8 (2.11) 64 (2.51)
Unknown 1 (0.26) 28 (1.10)
Ethnicity
Hispanic/Latino 14 (3.68) 30 (1.18)
Non-Hispanic/Non-
Latino

364 (95.79) 2523 (98.82)

Unknown 2 (0.53)

Individual-Level Data Acute Care Visits in
Study Period

4.22 (4.19) 3.12 (2.37)

Pediatric
Comorbidity Index

0.52 (0.48) 0.80 (0.68)

Distance to CMKC
(km)

9.99 (6.80) 13.46 (7.85)

Population-Level Data
(within Census Tract)

COI National (z-
score)

− 0.04 (0.03) − 0.02 (0.04)

Census Population
Estimate

3262.42
(1513.10)

3745.60
(1667.54)

Median Income 38527.20
(15046.22)

47664.30
(22505.30)

Percent High
School Education

82.87 (9.30) 86.48 (9.34)

Percent Below
Poverty Line

25.51 (12.54) 20.45 (13.10)

Percent of Vacant
Houses

18.18 (9.76) 14.00 (9.33)
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Fig. 1. Recruitment Distribution: Count of patients from the SEA study cohort (Panel A) and reference cohort (Panel B) within each of the 2020 US Census Tracts
for the catchment area of Children’s Mercy Kansas City.

Fig. 2. Recruitment Rate: calculated ratio of SEA patients to eligible patients within a given census tract. For stability, considered census tracts include only those
with at least 3 eligible patients from the reference cohort.
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farther away from the matching geographic reference cohort than even a
random sample of reference cohort. The attributes of the outliers (n= 6)
whose empirical distance was above of the random distribution at 99%
confidence (α < 0.01, single sided) are presented in comparison to the
mean attributes of the geographically matched reference cohort sub-
group, in Table 3.

5. Discussion

Individuals enrolled in research often do not fully reflect the broader
sociodemographic profile of the population that comprise the healthcare
centers and labs performing these studies [31]. To understand then how
best to generalize the results of a given study, we must continue efforts
to understand the manner in which study cohorts do, or do not, accu-
rately reflect the broader population from which they are drawn, not
only in aggregate, but at the individual-level. Applying resources from
medical informatics and data science methods can help researchers
ensure that their cohort is as representative as possible.

Building on contemporary approaches for quantifying representa-
tiveness utilizing a reference cohort, this work introduces a novel
approach to capture geospatial information linked to individuals’ home
addresses in such calculations. We recognize the impacts of housing and
neighborhoods are complex and are unlikely to be appropriately
captured or quantified by any single data point. Accordingly, this work
was designed to focus not on the specific data elements that describe an
individual, but on techniques to appropriately account for geographic

distribution in the assessment of a given metric.
This approach is a direct reflection of the diverse team structure of

this project. From conception to completion over a dozen unique metrics
were proposed, assessed, and refined. Most notably it was our commu-
nity team members that raised the concern that use of geospatial data
can delineate areas using arbitrary geospatial boundaries (e.g., census
tracts), which may separate individuals near boundary lines that likely
experience similar sociodemographic neighborhood influences. The
global weighting approach was then developed to quantify alignment of
two complete cohorts, an approach we believe to be novel in a repre-
sentation comparison outside of statistical techniques around inverse
probability weighting.

Looking at the case study, we find the ability of the proposed
methods to quantify representativeness of the SEA study cohort relative
to eligible but non-recruited individuals in the CMKC TSA highly
encouraging. Turning first to the measures of recruitment, the joint
assessment of geospatial distribution of the study and reference cohorts
can provide unique and important insight into potential biases missed
from viewing the cohorts as a single large group. The TSA is expansive,
covering approximately 513 census tracts across two states. From a high-
level review, we observe the refence cohort represents just under 75% of
the TSA, while the recruited population represents a significantly
smaller percentage (29 %). Given the sample size of the study cohort
relative to the reference cohort it is unsurprising we observe low abso-
lute coverage (~39 %). We note, however, the study cohort has a well-
aligned expected coverage rate (~80 %), suggesting these data are

Fig. 3. Recruitment Hot Spots: Results of the Getis-Ord Gi* analysis on SEA recruitment by census tract. Results indicate census tracts in which a higher-than-
expected count of SEA study participants were enrolled relative to nearby census tracts.
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reasonably in-line with recruitment efforts for a study cohort of this size
spread over such a wide geographic area. We expect study teams will use
these metrics in tandem. Recognizing that recruitment is well-
distributed for the allotted sample size, but also that analytical results
of this sample may reflect of only a small area relative to where the
broader population of individuals reside. This contrast is further sup-
ported by the misalignment in expected and absolute total land area. As
the study cohort captured ~18 % fewer sq. miles than expected from the
1000 + sq. miles of the reference cohort.

These values can be further contextualized with measures of
recruitment rate. Alignment of absolute and expected recruitment (~13
%) indicate low but anticipated rates in a given census tract. Again, we
expect study teams to jointly utilize metrics to adapt recruiting and
analysis plans. From these data it is clear recruitment has gone well, but
due to sample size, is expected to capture only a fractional percentage of
eligible patients in any given area. Thus, it will be critical to assure the
subset of study members are representative of the reference cohort in
any given area (Individual Characteristic Metrics). Such information can
provide insight into generalization of study results, as imbalanced
recruitment alone does not inherently mean that the cohort is funda-
mentally biased. Hotspot analysis provides additional information, in
this case illuminating a concerning pattern of clustered recruitment.
Even with balanced recruitment by percentage of eligible patients, this
finding suggests it may warrant targeted efforts to broaden recruitment

to areas with smaller pools of candidate individuals.
Moving to the assessment of alignment on individual-level charac-

teristics, we note several benefits in the consideration of geographic data
between study and reference cohorts. First, evaluating alignment
through repeated case-control matching, we can identify the subset of
features for which the study cohort closely resembles the broader
reference cohort, and those features for which they significantly deviate.
This information can be used to improve recruitment and analysis. On
the front end, recruitment can be prospectively monitored and adjusted
to align factors known to be confounders in downstream analysis. While
at the time of analysis, study teams can justify the utilization of appro-
priate techniques (e.g. doubly robust regression) to better account for
unbalanced factors.

Finally, distance-based comparisons provide an opportunity to dive
deeper into misalignment, identifying specific individuals in the study
cohort that are in some way distinct from the reference cohort on which
the results may be expected to generalize. For example, from Table 3, the
age of and count of acute care visits for patients 1 and 3, or the pediatric
severity score of patient 4. This information offers study teams a quan-
titative measure to justify potential exclusion or stratification in analysis
as a means to better align study results with broader reference
community.

As both approaches to individual-level alignment produce stan-
dardized continuous values, a study team is able to determine a
threshold of alignment based on study parameters and published liter-
ature. Teams also have an option to consider alignment within-
geographies or across the full reference cohort. While comparisons
within the same geographic area offer a more direct assessment, global
metrics can measure alignment in regions with limited reference cohorts
or for highly heterogenous study cohorts. However, the quality of this
comparison is highly dependent on the weighting factor used, which
must be closely related to similarity between individuals. Additionally,
even with weighted sampling, there is expected decrease in alignment
score using global metrics, as samples (infrequently) include disparate
individuals. Suggesting these metrics may require additional sampling
iterations for robustness.

5.1. Considerations for use

While alignment on geospatial factors is perhaps most commonly
associated with public-health studies, the relationship between location
and individual-level health suggests we must consider these measures
for all types of research. Yet as researchers strive for cohort alignment
and generalizability, it is important to recognize the determination of
which measures require balance remains a key question in study design.
Alignment should be viewed as a holistic concept, and not every factor
must be perfectly balanced for every study. A combination of both the
study cohort and broader research question should guide how imbalance
on specific metrics is be considered and addressed. For example, given
that the SEA study focuses on asthma and there are known associations
between asthma exacerbation and home proximity to major roadways, it
is perhaps more important to balance measures of coverage than spread,
assuring we capture a representative set of geographic regions (rather
than simply a large area) in which eligible individuals reside.

Furthermore, development of a temporally aligned reference cohort
is also critical. By comparing SEA cohort against individuals seen (but
not recruited) during the SEA recruitment period, we align changing
sociodemographic environments across the geographies being
compared, an important consideration for all studies utilizing these
methods. In making such decisions, we advocate for collaboration with
individuals in the communities being evaluated, as their insights often
capture perspectives on study design not available from quantitative
data alone. This information can be complemented with a computa-
tional approach, where determination of impactful factors can be
measured across geospatial metrics a-priori using the reference cohort
alone. By drawing samples of the expected study cohort size from the

Table 2
Balance of study and reference cohorts: Data are summarized across 500-
bootstrap iterations of matching. Continuous variables are summarized with a
Standardized Mean Difference (SMD), while nominal factors capture the largest
proportion difference within levels of the respective factor. Panel (A) represents
matching performed within the matching geography of each study patient. Panel
(B) captures matching performed across the entire reference cohort, with
matching weighted by Child Opportunity Index z-score.

Variable Mean (SD) [Min-Max]

(A) − Within
Geography

Age 0.471
(0.294)

[0.003–1.651]

Sex 0.049
(0.038)

[0–0.194]

Insurance Type 0.058
(0.034)

[0.006–0.158]

Ethnicity 0.036
(0.008)

[0.006–0.059]

Acute Care Visits in Study
Period

0.366
(0.093)

[0.047–0.6]

Pediatric Comorbidity Index 0.52
(0.108)

[0.236–0.813]

Distance to CMKC 0.018
(0.012)

[0–0.062]

(B) − Global
Weighting

Age 1.386
(1.05)

[0.014–4.494]

Sex 0.114
(0.089)

[0–0.428]

Insurance Type 0.118
(0.071)

[0.012–0.428]

Ethnicity 0.039
(0.015)

[0.006–0.22]

Acute Care Visits in Study
Period

0.418
(0.203)

[0.001–1.045]

Pediatric Comorbidity Index 0.577
(0.295)

[0.003–1.696]

Distance to CMKC 0.168
(0.123)

[0.002–0.754]

Census Population Estimate 0.158
(0.117)

[0–0.556]

Median Income 0.103
(0.077)

[0–0.395]

Percent High School
Education

0.179
(0.134)

[0.002–0.698]

Percent of Vacant Houses 0.172
(0.132)

[0–0.658]
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pool of reference individuals (as best determined from available retro-
spective data), it is possible to assess factors for which variability is
expected even before recruiting the first individual. During recruitment
these factors can be prospectively monitored, and recruitment targeted
to achieve balance.

5.2. Limitations

Consideration of geospatial information presents several challenges.
First, in addition to typical concerns of data quality (ambiguous ad-
dresses, etc.) [32], individual addresses may no longer reflect an in-
dividual’s current living situation and thus bias estimates, particularly
for those experiencing housing insecurity. These concerns can be
partially mitigated by regular data collection inherently collected from
larger health systems that provide comprehensive emergency, primary
care, and/or urgent care services but may require careful curation for
small study centers or studies involving vulnerable populations. Second,
the addition of a geographical context to alignment measures inherently
represents additional level of data stratification. As a result, for highly
specific study cohorts, reference cohorts for exact geographies may
become too sparse to obtain reliable estimates. We have taken steps to
address this by introducing measures that utilize data across the entire
reference cohort, and the utilization of expected measures based on
sample size for the assessment of recruitment. However, it remains
important to consider the granularity at which geocoding takes places
(highly specific census block group, vs larger regions such as counties)
based on the scope of the study and intended generalization of results.

Finally, this approach requires the same data elements be available
for both the study cohort and reference cohorts. While this may be
possible for large healthcare systems, with large repositories of histori-
cal data, this may not be always possible for other institutions, especially
if specialized data is collected to recruit the study cohort. In a similar
vein, we note use of historical records can introduce bias into reference
cohort selection. In this case study we noted not all members of the SEA

study could be identified using the inclusion criteria. Post-hoc investi-
gation found some had EHR race data defined as multiracial, but who
identified as Black/African American on recruitment. Although it does
not impact the results of the presented case study, as our reference
cohort only considers non-recruited individuals, this is an important
reminder that any comparison of cohorts can be biased by local coding
and documentation practices.

6. Conclusion and future development

Inequity in research recruitment can have lasting impacts on future
research by excluding certain populations, including many underserved
groups. Whether it be improved understanding of the limitations of
existing data or a means to monitor and adjust prospective data
collection, the informatics methods presented in this paper illustrate
clear value in capturing geographic context in the assessment of cohort
representativeness. While it is important to remember challenges in
generalization may stem from elements of study design, the ability to
capture and describe heterogeneity in the cohort remains an often
overlooked responsibility of a study team for which limited guidance is
provided [33]. As the secondary-use of data has become a key element in
training of large computational models, the ability to account for im-
balances relative to the general population will be critical in mitigating
the proliferation of biased and potentially harmful systems. It is our
hope this work provides a foundation on which to best make use of the
insights gained from research studies by improving the ability to un-
derstand the characteristics of a cohort best suited to generalize results.

Declaration of generative AI and AI-assisted technologies in the
writing process

None.

Table 3
OverviewDistance-Based Outliers: This table outlines each of the 6 identified outliers in the measures of individual characteristics. For each case, checkmarks in row
(P) specifies in the data for the outlier, while (R) provides the distribution of each factor in the reference cohort.

Sex Ethnicity Insurance Type

Age Female Male Hispanic Non-
Hispanic/
Non-Latino

Commercial Commercial &
Medicaid

Medicaid Self-Pay Acute
Care Visits
in Study
Period

Pediatric
Comorbidity
Index

Distance
to CMKC

1 P 0.25 15.00 0.29 11.30

R 9.40
(5.05)

5
(50.00)

5
(50.00)

0 (0.00) 10 (100.00) 1 (10.00) 3 (30.00) 6 (60.00) 0 (0.00) 3.00
(3.37)

0.91
(0.27)

11.52
(0.38)

2 P 5.92 4.00 0.40 5.22

R 9.81
(6.03)

4
(44.44)

5
(55.56)

0 (0.00) 9 (100.00) 0 (0.00) 2 (22.22) 6 (66.67) 1
(11.11)

2.00
(0.87)

0.85
(0.29)

5.20
(0.33)

3 P 0.92 12.00 0.19 4.53

R 8.40
(5.41)

13
(52.00)

12
(48.00)

0 (0.00) 25 (100.00) 2 (8.00) 0 (0.00) 22
(88.00)

1 (4.00) 2.80
(2.12)

0.89
(0.37)

4.17
(0.28)

4 P 3.17 6.00 0.31 14.93

R 7.92
(2.60)

2
(50.00)

2
(50.00)

0 (0.00) 4 (100.00) 2 (50.00) 0 (0) 2 (50.00) 0 (0.00) 2.00
(0.82)

1.17
(0.33)

15.65
(0.02)

5 P 2.50 7.00 0.33 18.81

R 8.76
(4.78)

4
(23.53)

13
(76.47)

0 (0.00) 17 (100.00) 5 (29.41) 2 (11.76) 10
(58.82)

0 (0.00) 2.53
(1.55)

0.63 (0.36) 20.35
(0.19)

6 P 5.00 6.00 0.33 12.47

R 6.42
(4.33)

12
(52.17)

11
(47.83)

2 (8.70) 21 (91.30) 2 (8.70) 0 (0.00) 21
(91.30)

0 (0.00) 2.87
(2.16)

0.70 (0.34) 11.68
(0.47)
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