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Bioimage informatics
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Abstract
Summary: Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to ad
vance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal 
analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we 
present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial 
analysis of SC imaging data using FDA techniques.
Availability and implementation: The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed docu
mentation, including four vignettes, available at http://juliawrobel.com/mxfda/.

1 Introduction
Advancements in single-cell (SC) spatial technologies have 
enabled researchers to study tissue structure and function at a 
cellular level while preserving the original spatial context of 
the tissue (Vandereyken et al. 2023, Wrobel et al. 2023, Liu 
et al. 2024). New technologies are rapidly emerging and typi
cally fall into two categories: (1) those that measure protein 
abundance in situ, including multiplex immunofluorescence 
and imaging mass cytometry (Giesen et al. 2014, Tan et al. 
2020), and (2) spatially-resolved transcriptomics assays that 
target mRNA (Ståhl et al. 2016). Though these types of tech
nologies differ substantially in their preprocessing pipelines, 
at the downstream analysis level both promise the discovery 
of novel spatial relationships among different cell types and 
how these relationships relate to patient outcomes (Bressan 
et al. 2023). It remains a challenge to extract spatial informa
tion that fully characterizes clinically meaningful patient phe
notypes from these data.

To this end, spatial summary functions from the spatial 
point process literature, such as Ripley’s K, can be used to 
quantify the clustering and co-occurrence of cells in a sample 
(Wilson et al. 2021). In this framework, the locations of cells 
are treated as following a point process, and realizations of a 
point process are called “point patterns”. Under the assump
tion that the rate of a cell type of interest is constant over an 

entire tissue, a point pattern will exhibit complete spatial ran
domness (CSR). The key question is if the observed pattern, 
as measured by a spatial summary function, deviates from 
CSR through clustering (Wilson et al. 2021). Clinically mean
ingful clustering patterns can then be assessed by using this 
spatial summary metric (computed for each tissue sample) as 
a covariate in a regression model of patient outcomes, such as 
survival or treatment response. This approach has been used 
to show that the degree of clustering of different types of im
mune cells is significantly associated with overall survival in 
ovarian and breast cancers (Keren et al. 2018, Wilson 
et al. 2022).

Several software packages for spatial analysis of SC data 
have recently emerged (Creed et al. 2021, Canete et al. 
2022, Palla et al. 2022, Ehsani et al. 2023, Masotti et al. 
2023, Windhager et al. 2023, Marconato et al. 2024, 
Samorodnitsky et al. 2024). However, many of these meth
ods calculate spatial metrics at a particular predetermined 
distance or radius, r, and the selection of this distance can be 
arbitrary. An alternative to calculating a single spatial value 
at radius r for each sample is to perform inference using the 
entire spatial summary function or curve evaluated over a 
range of distances covering the spatial domain. Methods 
from functional data analysis (FDA), an area of statistics that 
treats entire curves as predictors or outcomes in linear models 
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(Crainiceanu et al. 2024), are well suited to this task. Because 
functional regression models can capture highly nonlinear 
patterns over space or time, they have played a critical role in 
other areas of computational biology (Cremona et al. 2019, 
Seal et al. 2024). However, the adoption of FDA methods in 
computational biology has lagged behind other statistical or 
machine learning approaches, in part due to a lack of user- 
friendly software.

To address this gap, we introduce mxfda, an R package for 
FDA of SC spatial data, with custom tools for data wrangling, 
modeling, and visualization. Extending methodology described 
in Vu et al. (2022, 2023), we intend to set a foundation for 
FDA of spatial point process data from biological studies. The 
mxfda package has extensive documentation, including four 
vignettes detailing different aspects of the FDA pipeline for 
spatial SC data: (1) mx_fda, which explains how to set up an 
mxFDA S4 object and estimate spatial summary functions 
from the cell spatial coordinates, (2) mx_fpca, which 
describes dimension reduction and data exploration using 
functional principal component analysis (FPCA), (3) mx_fun
reg, which explains how to model patient outcomes using 
functional regression models with spatial summary functions 
as covariates, and (4) a vignette detailing how to convert spa
tial transcriptomics data to the mxFDA format. One key fea
ture of the package is the ability to incorporate user-defined 
spatial summary functions, in addition to existing methods. 
This flexibility allows users to utilize continuous-valued infor
mation, such as transcript counts or protein expression, rather 
than focusing solely on cell phenotype information, which is 
our primary emphasis. Moreover, the vignettes are constructed 
using data from real spatial SC experiments of non-small cell 
lung carcinoma and ovarian cancer.

2 Package workflow
In the following sections, we present a workflow for perform
ing FDA with spatial SC data (Fig. 1). First, we describe the 
data structure and how to format the data for the mxfda 
package. Next, we show how each sample is characterized us
ing a spatial point process. Finally, we explain methods for 
FPCA and functional regression implemented in the mxfda 
package that can be used to model the relationship between 
tissue spatial structure and patient outcomes.

2.1 Datasets
All examples in the mxfda package use data adapted 
from the Bioconductor package VectraPolarisData. 
VectraPolarisData contains data from two multiplex imaging 
experiments conducted at the University of Colorado 
Anschutz Medical Campus, one study involving 128 patients 
with high-grade serous ovarian cancer (Steinhart et al. 2021), 
and a second study consisting of 153 patients with non-small 
cell lung carcinoma (Johnson et al. 2021). Each dataset con
tains spatial coordinates and other sample characteristics for 
over 1.5 million cells. Code to reproduce the analysis for  
Fig. 1 is provided in the Supplement.

2.2 Configuring the mxFDA object
The mxfda package is built to work with spatial SC data that 
has already undergone image preprocessing steps such as cell 
and tissue segmentation (Blampey et al. 2024), batch correc
tion (Korsunsky et al. 2019, Harris et al. 2022), and cell phe
notyping (Bortolomeazzi et al. 2022, Xiong et al. 2024). 

After these preprocessing steps have been completed, samples 
are typically stored in a tabular format where each row is a 
cell, and each column is a feature including cell X and Y spa
tial coordinates, cell phenotype, and patient demographics 
and outcome variables (Fig. 1B). Analyses for the mxfda 
package are executed and stored using an S4 object of class 
“mxFDA”, where tabular data from Fig. 1B is converted to 
an “mxFDA” object using the make_mxfda() function. The 
“mxFDA” object provides a data structure ensuring func
tions from the mxfda package can expect consistent data for
mats, while also enabling custom behavior of common S3 
methods such as summary() and plot().

2.3 Extracting spatial summary functions
Figure 1A shows the spatial distributions of cells from two 
patients from the ovarian cancer dataset, with immune and 
other cells labeled green and gray, respectively. Our goal is to 
extract a spatial summary metric from each image that sum
marizes the spatial clustering of immune cells as a function of 
radius. This spatial measure is then used as a covariate in a 
statistical model. Spatial methods from the geospatial statis
tics literature, including Ripley’s K and nearest neighbor G, 
have become popular for summarizing cell-type clustering in 
spatial SC data (Wilson et al. 2021). The K and G statistics 
have both univariate and bivariate forms and are intended to 
capture clustering of a single cell type or colocalization of 
two different cell types, respectively.

Mathematically, univariate K is given by 

KðrÞ ¼
jAj

mðm − 1Þ

Xm

i¼1

Xm

i6¼j

1ðdfci; cjg≤ rÞeij;

where dfci; cjg is the pairwise distance between cells ci and cj, 
jAj is the tissue area, 1ð�Þ is an indicator function, and the eij 

is an edge correction to account for bias that occurs for 
points at the boundary of the tissue region. Similarly, univari
ate GðrÞ is the probability that the nearest cell of type c1 lies 
within a radius r of a cell of the same type, and is defined as: 

GðrÞ ¼
1
m

Xm

i¼1

1ðdNNfc1igrÞ

where dNNfc1g is the nearest-neighbor distance for cell type 
c1, defined as the shortest distance between a specific point in 
a point pattern and its closest neighboring point. For a dis
cussion of edge corrections for both K and G see Baddeley 
et al. (2015).

The function mxfda::extract_summary_functions() 
is used to estimate the spatial summary function for each 
sample. The user can choose between univariate, bivariate, 
and a multivariate metric based on entropy from Vu et al. 
(2023). The extract_summary_functions() function 
accepts two primary arguments: ‘extract_func’, which 
specifies whether to use a univariate, bivariate, or multivari
ate summary, and ‘summary_func’, which determines the 
type of summary function (such as G or K) using function 
names from the spatstat package. For instance, to com
pute the bivariate Ripley’s K function, the code would be 
structured as follows:

extract_summary_functions(extract_func 
¼ bivariate, summary_func ¼ Kcross).
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In addition, the user can choose to compare to a theoretical 
version of CSR or a more robust empirical version based on 
permutations of cell labels to account for regions of the tissue 
where no cells were able to be measured (i.e., holes in the tis
sue) (Wilson et al. 2022).

The user can also supply a different spatial summary metric 
than the ones provided in the package; how to customize this 
aspect of the pipeline is described in the mx_fda vignette.

Once estimated, spatial summary functions are stored as 
part of the mxfda object, and can be visualized using the 
plot() function. Figure 1C shows nearest neighbor G func
tions, GðrÞ, for the 128 patients in the ovarian cancer dataset. 
Each line represents GðrÞ for a specific patient and can be 
interpreted as the probability beyond chance of observing a 
neighboring immune cell within radius r. At a radius r<25, 
sample A has more clustered immune cells, and this is cap
tured by a higher GðrÞ value, than sample B.

2.4 Functional data models
Once spatial summary functions have been extracted, the 
next step in the pipeline is to conduct FDA. Popular FDA 
methods relevant to the analysis of SC spatial data include 
FPCA and functional regression, and implementations of 
both are included in mxfda. We describe these methods 
briefly here, but refer interested readers to (Crainiceanu et al. 
2024) for a recently published overview of common FDA 

methods. FPCA, the analog of principal components (PCs) 
analysis for functional data, characterizes dominant patterns 
in the data and is frequently used for dimension reduction 
and clustering. Functional regression is the FDA analog of 
(generalized) linear regression, where a function can be the 
outcome, a predictor, or both. In the context of SC data, 
these regression models allow users to perform estimation 
and inference on the association between patient outcomes 
and spatial clustering simultaneously for all radii r.

FPCA is estimated using the run_fpca() function and vi
sualized using plot() (Xiao et al. 2016). Figure 1D1 shows 
the results of running FPCA on the GðrÞ curves presented in  
Fig. 1C. The black line represents the mean curve, while the 
blue and red dotted lines show ± one standard deviation of 
the first (left panel) or second (right panel) PC. The mean 
curve shows that, on average across all samples, G is highest 
at approximately r¼ 15 and decreases as r increases. The first 
PC, which explains 78% of the variance in the curves, can be 
interpreted as a shift up or down from the population mean. 
The second PC, which explains 16% of the variance, reflects 
either a pattern of more clustering than average at r<50 but 
less clustering at r>50 (blue line) or a relatively consistent G 
across radii (red line). Each individual’s G curve is a linear 
combination of the patterns represented by each PC. For in
stance, a subject with a high score for FPC1 and scores near 
zero for other PCs will have a curve that closely resembles the 

Figure 1. Typical workflow for the mxfda package. A shows the arrangement of immune (bold) and all other cells in two ovarian cancer samples. B depicts 
a typical single-cell spatial dataset, with a row for each cell containing spatial coordinates, cell phenotype, and patient features; this is transformed into an 
object of class “mxFDA” using the make_mxfda() function. C shows GðrÞ for each of the 128 ovarian cancer patients in the dataset, estimated using 
extract_summary_functions(). Highlighted are summary functions for the two samples in (A). D1 shows the mean (solid line) ± one standard 
deviation (dotted lines) of the first (left panel) or second (right panel) principal component. FPCA is estimated using run_fpca() and visualized using plot 
(). D2 shows the hazard ratio (solid line) and 95% confidence bands (dotted lines) from a functional Cox model, estimated using run_fcm().
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blue line for PC1. Multilevel FPCA (MFPCA), a method for 
dimension-reduction when there are multiple samples per pa
tient, is also implemented in mxfda. Further examples with 
FPCA and MFPCA are provided in the package vi
gnette mx_fpca.

The mxfda package also implements scalar-on-function re
gression, in which the outcome is a scalar patient characteris
tic such as survival or disease subtype, and spatial summary 
functions from Fig. 1C are the modeled as covariates. 
Specifically, mxfda allows for models with survival outcomes 
described in Cui et al. (2021); Vu et al. (2022) using the 
run_fcm() function, and binary and continuous outcomes 
using the run_sofr() function. In these regression models, 
the association between spatial summary functions, denoted 
XðrÞ, and the outcome, denoted Y, is estimated through a 
functional regression coefficient, βðrÞ. βðrÞ is interpreted the 
same as a standard regression coefficient, with the addition 
that it may have a different value at each radius r. Figure 1D2 
shows eβðrÞ presents results from a functional Cox regression 
model to determine the impact of the curves in Fig. 1C on 
overall survival in ovarian cancer. In survival models the 
exponentiated coefficient is interpreted as a hazard ratio 
(HR), given by the solid black line. The dotted black lines 
show the 95% confidence interval at each radius r, and 
regions where the dotted black lines do not contain the hori
zontal red line (i.e., HR¼1) are statistically significant.  
Figure 1D2 indicates that greater immune cell clustering for 
r 2 ð0;45Þ is significantly associated with better survival. 
Plots of functional regression coefficients can be quickly 
made using mxfda::plot(). More functional regression 
details are available in the mx_funreg vignette.

3 Conclusion
The tools provided in the mxfda package enable biomedical 
researchers to implement a wide range of FDA methods for 
spatial SC data, and perform inference on the relationship be
tween spatial clustering of different cell types and patient out
comes at a range of distances covering the sample spatial 
domain. All vignettes and package functions are illustrated 
using examples with open-source data from real SC experi
ments to demonstrate how researchers can apply these meth
ods to their own data. Taken together, the mxfda package 
facilitates a unique approach to the spatial analysis of SC 
transcriptomics and proteomics data with potential for broad 
application in biomedical research.
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