Document Type

Article

Publication Date

4-22-2021

Identifier

DOI: 10.1038/s41598-021-88229-0

Abstract

Ductal carcinoma in situ (DCIS) is the most common type of pre-invasive breast cancer diagnosed in women. Because the majority of DCIS cases are unlikely to progress to invasive breast cancer, many women are over-treated for DCIS. By understanding the molecular basis of early stage breast cancer progression, we may identify better prognostic factors and design treatments tailored specifically to the predicted outcome of DCIS. Chemokines are small soluble molecules with complex roles in inflammation and cancer progression. Previously, we demonstrated that CCL2/CCR2 chemokine signaling in breast cancer cell lines regulated growth and invasion through p42/44MAPK and SMAD3 dependent mechanisms. Here, we sought to determine the clinical and functional relevance of CCL2/CCR2 signaling proteins to DCIS progression. Through immunostaining analysis of DCIS and IDC tissues, we show that expression of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK correlate with IDC. Using PDX models and an immortalized hDCIS.01 breast epithelial cell line, we show that breast epithelial cells with high CCR2 and high CCL2 levels form invasive breast lesions that express phospho-SMAD3 and phospho-p42/44MAPK. These studies demonstrate that increased CCL2/CCR2 signaling in breast tissues is associated with DCIS progression, and could be a signature to predict the likelihood of DCIS progression to IDC.

Journal Title

Sci Rep

Volume

11

Issue

1

First Page

8708

Last Page

8708

Comments

Grant support

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher's Link: https://www.nature.com/articles/s41598-021-88229-0

Share

COinS