Document Type


Publication Date



DOI: 10.3390/cancers14030522; PMCID: PMC8833805


Purpose: Rhabdomyosarcoma (RMS) exhibits a complex prognostic algorithm based on histologic, biologic and clinical parameters. The embryonal (ERMS) and spindle cell-sclerosing RMS (SRMS) histologic subtypes warrant further studies due to their heterogenous genetic background and variable clinical behavior. NanoString digital profiling methods have been previously highlighted as robust novel methods to detect protein and microRNA expression in several cancers but not in RMS.

Methods/patients: To identify prognostic biomarkers, we categorized 12 ERMS and SRMS tumor cases into adverse (n = 5) or favorable (n = 7) prognosis groups and analyzed their signaling pathways and microRNA profiles. The digital spatial profiling of protein and microRNA analysis was performed on formalin-fixed, paraffin-embedded (FFPE) tumor tissue using NanoString technology.

Results: The detectable expression of several component members of the PI3K/AKT, MAPK and apoptosis signaling pathways was highlighted in RMS, including INPP4B, Pan-AKT, MET, Pan-RAS, EGFR, phospho-p90 RSK, p44/42 ERK1/2, BAD, BCL-XL, cleaved caspase-9, NF1, PARP and p53. Compared to cases with favorable prognosis, the adverse-prognosis tumor samples had significantly increased expression of INPP4B, which was confirmed with traditional immunohistochemistry. The analysis of microRNA profiles revealed that, out of 798 microRNAs assessed, 228 were overexpressed and 134 downregulated in the adverse prognosis group. Significant over-expression of oncogenic/tumor suppressor miR-3144-3p, miR-612, miR-302d-3p, miR-421, miR-548ar-5p and miR-548y (p < 0.05) was noted in the adverse prognosis group.

Conclusion: This study highlights the utility of NanoString digital profiling methods in RMS, where it can detect distinct molecular signatures with the expression of signaling pathways and microRNAs from FFPE tumor tissue that may help identify prognostic biomarkers of interest. The overexpression of INPP4B and miR-3144-3p, miR-612, miR-302d-3p, miR-421, miR-548y and miR-548ar-5p may be associated with worse overall survival in ERMS and SRMS.

Journal Title

Cancers (Basel)






NanoString; PI3K/AKT; digital spatial profiling; microRNA; rhabdomyosarcoma


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher's Link: