Title

Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves.

Document Type

Article

Publication Date

12-1-2016

Identifier

DOI: 10.1007/s13239-016-0275-9

Abstract

There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.

Journal Title

Cardiovasc Eng Technol

Volume

7

Issue

4

First Page

352

Last Page

362

MeSH Keywords

Animals; Bioprosthesis; Equipment Failure Analysis; Heart Valve Prosthesis; Hydrodynamics; Swine; Tissue Engineering

Keywords

Decellularization; Pre-regulatory testing; Pulmonary heart valve; Tissue engineering

Share

COinS