Circulating Metabolomic Associations with Neurocognitive Outcomes in Pediatric CKD.

Document Type


Publication Date



DOI: 10.2215/CJN.0000000000000318


BACKGROUND: Children with CKD are at risk for impaired neurocognitive functioning. We investigated metabolomic associations with neurocognition in children with CKD.

METHODS: We leveraged data from the Chronic Kidney Disease in Children (CKiD) study and the Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease (NiCK) study. CKiD is a multi-institutional cohort that enrolled children aged 6 months to 16 years with eGFR 30-90 ml/min per 1.73 m 2 ( n =569). NiCK is a single-center cross-sectional study of participants aged 8-25 years with eGFR/min per 1.73 m 2 ( n =60) and matched healthy controls ( n =67). Untargeted metabolomic quantification was performed on plasma (CKiD, 622 metabolites) and serum (NiCK, 825 metabolites) samples. Four neurocognitive domains were assessed: intelligence, attention regulation, working memory, and parent ratings of executive function. Repeat assessments were performed in CKiD at 2-year intervals. Linear regression and linear mixed-effects regression analyses adjusting for age, sex, delivery history, hypertension, proteinuria, CKD duration, and glomerular versus nonglomerular diagnosis were used to identify metabolites associated with neurocognitive z-scores. Analyses were performed with and without adjustment for eGFR.

RESULTS: There were multiple metabolite associations with neurocognition observed in at least two of the analytic samples (CKiD baseline, CKiD follow-up, and NiCK CKD). Most of these metabolites were significantly elevated in children with CKD compared with healthy controls in NiCK. Notable signals included associations with parental ratings of executive function: phenylacetylglutamine, indoleacetylglutamine, and trimethylamine N-oxide-and with intelligence: γ -glutamyl amino acids and aconitate.

CONCLUSIONS: Several metabolites were associated with neurocognitive dysfunction in pediatric CKD, implicating gut microbiome-derived substances, mitochondrial dysfunction, and altered energy metabolism, circulating toxins, and redox homeostasis.

Journal Title

Clin J Am Soc Nephrol





First Page


Last Page


Library Record