Document Type
Article
Publication Date
10-1-2016
Identifier
PMCID: PMC5963289 DOI: 10.1109/ICHI.2016.67
Abstract
Sedentary behavior of youth is an important determinant of health. However, better measures are needed to improve understanding of this relationship and the mechanisms at play, as well as to evaluate health promotion interventions. Wearable accelerometers are considered as the standard for assessing physical activity in research, but do not perform well for assessing posture (i.e., sitting vs. standing), a critical component of sedentary behavior. The machine learning algorithms that we propose for assessing sedentary behavior will allow us to re-examine existing accelerometer data to better understand the association between sedentary time and health in various populations. We collected two datasets, a laboratory-controlled dataset and a free-living dataset. We trained machine learning classifiers separately on each dataset and compared performance across datasets. The classifiers predict five postures: sit, stand, sit-stand, stand-sit, and stand\walk. We compared a manually constructed Hidden Markov model (HMM) with an automated HMM from existing software. The manually constructed HMM gave more F1-Macro score on both datasets.
Journal Title
IEEE Int Conf Healthc Inform
Volume
2016
First Page
375
Last Page
379
MeSH Keywords
Sedentary Behavior; Machine Learning; Social Determinants of Health; Child; Adolescent
Recommended Citation
Golla GK, Carlson JA, Huan J, Kerr J, Mitchell T, Borner K. Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement. IEEE Int Conf Healthc Inform. 2016;2016:375-379. doi:10.1109/ICHI.2016.67
Included in
Community Health and Preventive Medicine Commons, Investigative Techniques Commons, Pediatrics Commons
Comments
Grant support