Document Type

Article

Publication Date

10-2-2020

Identifier

DOI: 10.3390/antiox9100949

Abstract

Glutathione peroxidases (GPxs) form a broad family of antioxidant proteins essential for maintaining redox homeostasis in eukaryotic cells. In this study, we used an integrative approach that combines bioinformatics, molecular biology, and biochemistry to investigate the role of GPxs in reactive oxygen species detoxification in the unicellular eukaryotic model organism Tetrahymena thermophila. Both phylogenetic and mechanistic empirical model analyses provided indications about the evolutionary relationships among the GPXs of Tetrahymena and the orthologous enzymes of phylogenetically related species. In-silico gene characterization and text mining were used to predict the functional relationships between GPxs and other physiologically-relevant processes. The GPx genes contain conserved transcriptional regulatory elements in the promoter region, which suggest that transcription is under tight control of specialized signaling pathways. The bioinformatic findings were next experimentally validated by studying the time course of gene transcription and enzymatic activity after copper (Cu) exposure. Results emphasize the role of GPxs in the detoxification pathways that, by complex regulation of GPx gene expression, enable Tethraymena to survive in high Cu concentrations and the associated redox environment.

Journal Title

Antioxidants (Basel)

Volume

9

Issue

10

Keywords

GPx; ROS; antioxidant system; ciliate protists; copper; free-radicals; glutathione peroxidases genes; metals; protein–protein interaction network; reactive oxygen species

Comments

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS