Document Type
Article
Publication Date
10-2021
Identifier
DOI: 10.1016/j.eclinm.2021.101112; PMCID: PMC8405351
Abstract
Background: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia.
Methods: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians)clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients.
Findings: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients.
Interpretation: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.
Journal Title
EClinicalMedicine
Volume
40
First Page
101112
Last Page
101112
Keywords
COVID-19; Clustering; Critical care medicine; Multisystem inflammatory syndrome; Pediatrics
Recommended Citation
Geva A, Patel MM, Newhams MM, et al. Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents. EClinicalMedicine. 2021;40:101112. doi:10.1016/j.eclinm.2021.101112
Comments
Grant support
This article is available under the Creative Commons CC-BY-NC-ND license and permits non-commercial use of the work as published, without adaptation or alteration provided the work is fully attributed.
Publisher's Link: https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00392-8/fulltext