Document Type
Article
Publication Date
3-14-2023
Identifier
DOI: 10.1073/pnas.2208361120
Abstract
Crowding effects critically impact the self-organization of densely packed cellular assemblies, such as biofilms, solid tumors, and developing tissues. When cells grow and divide, they push each other apart, remodeling the structure and extent of the population's range. Recent work has shown that crowding has a strong impact on the strength of natural selection. However, the impact of crowding on neutral processes, which controls the fate of new variants as long as they are rare, remains unclear. Here, we quantify the genetic diversity of expanding microbial colonies and uncover signatures of crowding in the site frequency spectrum. By combining Luria-Delbrück fluctuation tests, lineage tracing in a novel microfluidic incubator, cell-based simulations, and theoretical modeling, we find that the majority of mutations arise behind the expanding frontier, giving rise to clones that are mechanically "pushed out" of the growing region by the proliferating cells in front. These excluded-volume interactions result in a clone-size distribution that solely depends on where the mutation first arose relative to the front and is characterized by a simple power law for low-frequency clones. Our model predicts that the distribution depends on a single parameter-the characteristic growth layer thickness-and hence allows estimation of the mutation rate in a variety of crowded cellular populations. Combined with previous studies on high-frequency mutations, our finding provides a unified picture of the genetic diversity in expanding populations over the whole frequency range and suggests a practical method to assess growth dynamics by sequencing populations across spatial scales.
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Volume
120
Issue
11
First Page
2208361120
Last Page
2208361120
MeSH Keywords
Animals; Biofilms; Gastropoda; Microfluidics; Mutation; Mutation Rate
Keywords
biofilms; clone size distribution; genetic variation; intratumor heterogeneity
Recommended Citation
Schreck CF, Fusco D, Karita Y, et al. Impact of crowding on the diversity of expanding populations. Proc Natl Acad Sci U S A. 2023;120(11):e2208361120. doi:10.1073/pnas.2208361120
Comments
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
Publisher's Link: https://doi.org/10.1073/pnas.2208361120