Document Type

Article

Publication Date

9-25-2023

Identifier

DOI: 10.1186/s12966-023-01515-0; PMCID: PMC10521469

Abstract

BACKGROUND: Intake-balance assessments measure energy intake (EI) by summing energy expenditure (EE) with concurrent change in energy storage (ΔES). Prior work has not examined the validity of such calculations when EE is estimated via open-source techniques for research-grade accelerometry devices. The purpose of this study was to test the criterion validity of accelerometry-based intake-balance methods for a wrist-worn ActiGraph device.

METHODS: Healthy adults (n = 24) completed two 14-day measurement periods while wearing an ActiGraph accelerometer on the non-dominant wrist. During each period, criterion values of EI were determined based on ΔES measured by dual X-ray absorptiometry and EE measured by doubly labeled water. A total of 11 prediction methods were tested, 8 derived from the accelerometer and 3 from non-accelerometry methods (e.g., diet recall; included for comparison). Group-level validity was assessed through mean bias, while individual-level validity was assessed through mean absolute error, mean absolute percentage error, and Bland-Altman analysis.

RESULTS: Mean bias for the three best accelerometry-based methods ranged from -167 to 124 kcal/day, versus -104 to 134 kcal/day for the non-accelerometry-based methods. The same three accelerometry-based methods had mean absolute error of 323-362 kcal/day and mean absolute percentage error of 18.1-19.3%, versus 353-464 kcal/day and 19.5-24.4% for the non-accelerometry-based methods. All 11 methods demonstrated systematic bias in the Bland-Altman analysis.

CONCLUSIONS: Accelerometry-based intake-balance methods have promise for advancing EI assessment, but ongoing refinement is necessary. We provide an R package to facilitate implementation and refinement of accelerometry-based methods in future research (see paulhibbing.com/IntakeBalance).

Journal Title

The international journal of behavioral nutrition and physical activity [electronic resource]

Volume

20

Issue

1

First Page

115

Last Page

115

Keywords

Ambulatory assessments; Energy balance; Wearables

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher's Link: https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-023-01515-0

Share

COinS